NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling

NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox... The function of a gene closely linked to nitrate assimilation loci from Chlamydomonas reinhardtii has been investigated. Gene expression analysis shows that its mRNA accumulation is modulated by light, carbon source and adaptation to light/dark cyclic conditions of growth. A full-length cDNA was isolated for the light-regulated transcript, and sequence characterization indicates that it encodes the NADP-malate dehydrogenase from C. reinhardtii (NADP-MDH;Cr). The primary structure of NADP-MDH;Cr is closely related to plant, mossfern and algal NADP-malate dehydrogenases, and shares structural determinants for chloroplast targeting, cofactor binding and catalysis. Sequence conservation extends to the carboxy end of the protein, where plant and mossfern enzymes have two cysteines and an acidic C-terminus with a critical role for regulation of NADP-MDH activity by the thioredoxin/ferredoxin system. Accordingly, incubation with DTT activates NADP-MDH enzyme in cell-free extracts from C. reinhardtii. Like NADP-malate dehydrogenases from two other green algae, the N-terminal extension of NADP-MDH;Cr lacks two thiol residues whose reduction constitutes the rate-limiting step in the activation reaction of plant enzymes. Homology-based 3D modelling of NADP-MDH;Cr, the first structure predicted for NADP-malate dehydrogenase from a lower eukaryote, evidences close positioning of two new cysteines in an accessible region of the protein surface. These results suggest that the algal enzyme has a different arrangement of regulatory disulfide bridges, which might involve the existence of new mechanisms that control functioning of the malate valve, the main system to export reducing power from the chloroplast of plant cells. Plant Molecular Biology Springer Journals

NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling

Loading next page...
Kluwer Academic Publishers
Copyright © 2002 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial