NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water

NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce... It is generally accepted that ions interact directly with lipids in biological membranes. Decades of biophysical studies on pure lipid bilayer systems have shown that only certain types of ions, most significantly large anions and multivalent cations, can fundamentally alter the structure and dynamics of lipid bilayers. It has long been accepted that at physiological concentrations NaCl ions do not alter the physical behavior or structure of bilayers composed solely of zwitterionic phosphatidylcholine (PC) lipids. Recent X-ray scattering experiments have reaffirmed this dogma, showing that below 1 M concentration, NaCl does not significantly alter bilayer structure. However, despite this history, there is an ongoing controversy within the molecular dynamics (MD) simulation community regarding NaCl/PC interactions. In particular, the CHARMM and GROMOS force fields show dramatically different behavior, including the effect on bilayer structure, surface potential, and the ability to form stable, coordinated ion–lipid complexes. Here, using long-timescale, constant-pressure simulations under the newest version of the CHARMM force field, we find that Na+ and Cl− associate with PC head groups in a POPC bilayer with approximately equal, though weak, affinity, and that the salt has a negligible effect on bilayer structure, consistent with earlier CHARMM results and more recent X-ray data. The results suggest that interpretation of simulations where lipids interact with charged groups of any sort, including charged proteins, must be carefully scrutinized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water

Loading next page...
 
/lp/springer_journal/nacl-interactions-with-phosphatidylcholine-bilayers-do-not-alter-FSv14iOYqK
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9395-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial