Na+-Coupled Alanine Transport in LLC-PK1 Cells: The Relationship Between the K m for Na+ at Low [Alanine] and Potential Dependence for the System

Na+-Coupled Alanine Transport in LLC-PK1 Cells: The Relationship Between the K m for Na+ at Low... Analysis of the mechanistic basis by which sodium-coupled transport systems respond to changes in membrane potential is inherently complex. Algebraic expressions for the primary kinetic parameters (K m and V max ) consist of multiple terms that encompass most rate constants in the transport cycle. Even for a relatively simple cotransport system such as the Na+/alanine cotransporter in LLC-PK1 cells (1:1 Na+ to substrate coupling, and an ordered binding sequence), the algebraic expressions for K m for either substrate includes ten of the twelve rate constants necessary for modeling the full transport cycle. We show here that the expression of K m of the first-bound substrate (Na+) simplifies markedly if the second-bound substrate (alanine) is held at a low concentration so that its' binding becomes the rate limiting step. Under these conditions, the expression for the K Na m includes rate constants for only two steps in the full cycle: (i) binding/dissociation of Na+, and (ii) conformational `translocation' of the substrate-free protein. The influence of imposed changes in membrane potential on the apparent K Na m for the LLC-PK1 alanine cotransporter at low alanine thus provides insight to potential dependence at these sites. The data show no potential dependence for K Na m at 5 μm alanine, despite marked potential dependence at 2 mm alanine when the full algebraic expression applies. The results suggest that neither translocation of the substrate-free form of the transporter nor binding/dissociation of extracellular sodium are potential dependent events for this transport system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Na+-Coupled Alanine Transport in LLC-PK1 Cells: The Relationship Between the K m for Na+ at Low [Alanine] and Potential Dependence for the System

Loading next page...
 
/lp/springer_journal/na-coupled-alanine-transport-in-llc-pk1-cells-the-relationship-between-w39AmeBdrT
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900441
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial