N-of-1 Design and Its Applications to Personalized Treatment Studies

N-of-1 Design and Its Applications to Personalized Treatment Studies N-of-1 trial is a type of clinical trial which has been applied in chronic recurrent conditions that require long-term non-curative treatment. In this type of trials, each patient will be randomly assigned to one of the treatment sequences and repeatedly crossed over two or more treatments of interests. Through this cross-comparing method (cross-over phase), investigator can identify an optimal treatment (medicine or therapy) for the patient and treat the patient with the optimal treatment in an extension phase. This design could efficiently reduce the placebo effect, which is often seen in clinical trials, and maximize the true treatment effect. This type of design has been used in some traditional Chinese medicine (TCM) clinical trials lately. However, it brings some challenges for collecting and analyzing the data. Research on statistical methodology of this type of design is rarely found in the literature. The goal of this research is to discuss the application of the N-of-1 design to personalized treatment studies. We will demonstrate a real study conducted in TCM and present some theoretical and simulation results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics in Biosciences Springer Journals

N-of-1 Design and Its Applications to Personalized Treatment Studies

Loading next page...
 
/lp/springer_journal/n-of-1-design-and-its-applications-to-personalized-treatment-studies-SPqY6efyZ4
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Statistics; Statistics for Life Sciences, Medicine, Health Sciences; Biostatistics; Theoretical Ecology/Statistics
ISSN
1867-1764
eISSN
1867-1772
D.O.I.
10.1007/s12561-016-9165-9
Publisher site
See Article on Publisher Site

Abstract

N-of-1 trial is a type of clinical trial which has been applied in chronic recurrent conditions that require long-term non-curative treatment. In this type of trials, each patient will be randomly assigned to one of the treatment sequences and repeatedly crossed over two or more treatments of interests. Through this cross-comparing method (cross-over phase), investigator can identify an optimal treatment (medicine or therapy) for the patient and treat the patient with the optimal treatment in an extension phase. This design could efficiently reduce the placebo effect, which is often seen in clinical trials, and maximize the true treatment effect. This type of design has been used in some traditional Chinese medicine (TCM) clinical trials lately. However, it brings some challenges for collecting and analyzing the data. Research on statistical methodology of this type of design is rarely found in the literature. The goal of this research is to discuss the application of the N-of-1 design to personalized treatment studies. We will demonstrate a real study conducted in TCM and present some theoretical and simulation results.

Journal

Statistics in BiosciencesSpringer Journals

Published: Sep 6, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off