N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells

N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells With urea as nitrogen source, N-doped TiO2 powders were synthesized and fabricated for low-temperature dye-sensitized solar cells (DSSCs) by the method of doctor-blade, and the highest temperature of the whole process was 120 °C. SEM, TEM, XRD, DRS, and XPS were used to analyze the microstructure of the N-doped TiO2 powders. EIS, Bode plot, UV–Vis and I–V were employed to measure the photovoltaic performance of the DSSCs. The maximum photoelectric conversion efficiency (η) was 5.18 % when the amount of the doped nitrogen was 4 %, and, when compared with the η of 4.22 % for pure TiO2, the short circuit current was increased by 22.2 % and the efficiency was increased by 22.7 %. It has been shown that the doped nitrogen could effectively suppress TiO2 crystal phase transition from anatase to rutile, and decrease the size of particles. Therefore, the increased photoelectric conversion efficiency of the N-doped TiO2-based DSSC was ascribed to the more suitable crystal phase, sizes and inner structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells

Loading next page...
 
/lp/springer_journal/n-doped-tio2-applied-in-low-temperature-based-dye-sensitized-solar-U07379FYtM
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2491-1
Publisher site
See Article on Publisher Site

Abstract

With urea as nitrogen source, N-doped TiO2 powders were synthesized and fabricated for low-temperature dye-sensitized solar cells (DSSCs) by the method of doctor-blade, and the highest temperature of the whole process was 120 °C. SEM, TEM, XRD, DRS, and XPS were used to analyze the microstructure of the N-doped TiO2 powders. EIS, Bode plot, UV–Vis and I–V were employed to measure the photovoltaic performance of the DSSCs. The maximum photoelectric conversion efficiency (η) was 5.18 % when the amount of the doped nitrogen was 4 %, and, when compared with the η of 4.22 % for pure TiO2, the short circuit current was increased by 22.2 % and the efficiency was increased by 22.7 %. It has been shown that the doped nitrogen could effectively suppress TiO2 crystal phase transition from anatase to rutile, and decrease the size of particles. Therefore, the increased photoelectric conversion efficiency of the N-doped TiO2-based DSSC was ascribed to the more suitable crystal phase, sizes and inner structure.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial