Myogenic Differentiation of Mytilus Larval Cellsin vitro

Myogenic Differentiation of Mytilus Larval Cellsin vitro A myogenic differentiation program can be realized during the cultivation of Mytilus trossuluscells derived from larvae in premyogenic developmental stages. About 10–15% of cells in such cultures showed that they are capable of contracting actively. The shape of such cells and the high concentration of actin microfilaments indicate a similarity with smooth muscle cells. However, the pattern of contractile activity and the protein composition of these cells differ significantly from the corresponding characteristics of differentiated smooth muscle cells. The proportion between the main proteins of the thick fiber, paramyosin, and myosin in cultivated cells is far lower than in the muscles of larvae or adult molluscs. We also found that substrates with different adhesional characteristics may determine cell development towards one or the other phenotype. Cells attached to the collagen substrate, but not spread on it, had high proliferative potential; the collagen substrate, however, inhibited myogenic differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Myogenic Differentiation of Mytilus Larval Cellsin vitro

Loading next page...
 
/lp/springer_journal/myogenic-differentiation-of-mytilus-larval-cellsin-vitro-1HbOIxEzZd
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1023/A:1012308517708
Publisher site
See Article on Publisher Site

Abstract

A myogenic differentiation program can be realized during the cultivation of Mytilus trossuluscells derived from larvae in premyogenic developmental stages. About 10–15% of cells in such cultures showed that they are capable of contracting actively. The shape of such cells and the high concentration of actin microfilaments indicate a similarity with smooth muscle cells. However, the pattern of contractile activity and the protein composition of these cells differ significantly from the corresponding characteristics of differentiated smooth muscle cells. The proportion between the main proteins of the thick fiber, paramyosin, and myosin in cultivated cells is far lower than in the muscles of larvae or adult molluscs. We also found that substrates with different adhesional characteristics may determine cell development towards one or the other phenotype. Cells attached to the collagen substrate, but not spread on it, had high proliferative potential; the collagen substrate, however, inhibited myogenic differentiation.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Oct 9, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off