MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops

MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops The Arabidopsis AtMYB80 transcription factor (formerly AtMYB103) regulate genes essential for tapetal and pollen development. One of these genes, coding for an aspartic protease (UNDEAD), may control the timing of tapetal programmed cell death (PCD). In crop plants such as rice and wheat, abiotic stresses lead to abnormal tapetal development resulting in delayed PCD. Manipulation of AtMYB80 function has been used to develop a reversible male sterility system applicable to hybrid crop production. MYB80 homologs were cloned from wheat, rice, canola and cotton. The promoters of the homologs drove temporal and spatial expression patterns of the GUS reporter gene in the tapetum and microspores of Arabidopsis anthers identical to the AtMYB80 promoter. A short region is conserved in all five MYB80 promoters. The MYB80 homolog genes, driven by the AtMYB80 or their respective promoters, rescued the atmyb80 mutant, completely restoring male fertility. The canola MYB80 was fused to the EAR (ERF-associated amphiphilic repression) repressor and canola plants transgenic for the construct exhibited premature tapetal degradation and subsequent pollen abortion. The five MYB80 homologs all shared a 44 amino acid sequence immediately adjacent to the R2R3 domain which appears to be necessary for MYB80 function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops

Loading next page...
 
/lp/springer_journal/myb80-a-regulator-of-tapetal-and-pollen-development-is-functionally-FThmDxc5w0
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9855-0
Publisher site
See Article on Publisher Site

Abstract

The Arabidopsis AtMYB80 transcription factor (formerly AtMYB103) regulate genes essential for tapetal and pollen development. One of these genes, coding for an aspartic protease (UNDEAD), may control the timing of tapetal programmed cell death (PCD). In crop plants such as rice and wheat, abiotic stresses lead to abnormal tapetal development resulting in delayed PCD. Manipulation of AtMYB80 function has been used to develop a reversible male sterility system applicable to hybrid crop production. MYB80 homologs were cloned from wheat, rice, canola and cotton. The promoters of the homologs drove temporal and spatial expression patterns of the GUS reporter gene in the tapetum and microspores of Arabidopsis anthers identical to the AtMYB80 promoter. A short region is conserved in all five MYB80 promoters. The MYB80 homolog genes, driven by the AtMYB80 or their respective promoters, rescued the atmyb80 mutant, completely restoring male fertility. The canola MYB80 was fused to the EAR (ERF-associated amphiphilic repression) repressor and canola plants transgenic for the construct exhibited premature tapetal degradation and subsequent pollen abortion. The five MYB80 homologs all shared a 44 amino acid sequence immediately adjacent to the R2R3 domain which appears to be necessary for MYB80 function.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 16, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off