Mutational analysis of the ribC gene of Bacillus subtilis

Mutational analysis of the ribC gene of Bacillus subtilis The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been found (in addition to the two mutations that were detected earlier) in the distal region of the gene, which controls the flavokinase (flavin mononucleotide (FMN) synthase) activity. On the basis of all data known to date, it has been concluded that the identified mutations affect riboflavin and ATP binding sites. No mutations have been found in the PTAN conserved sequence, which forms the magnesium and ATP common binding site and is identical for organisms of all organizational levels, from bacteria too humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Mutational analysis of the ribC gene of Bacillus subtilis

Loading next page...
 
/lp/springer_journal/mutational-analysis-of-the-ribc-gene-of-bacillus-subtilis-qOiscSHN4N
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics ; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541106010X
Publisher site
See Article on Publisher Site

Abstract

The nucleotide sequence of the ribC gene encoding the synthesis of bifunctional flavokinase/flavine adenine nucleotide (FAD) synthetase in Bacillus subtilis have been determined in a family of riboflavinconstitutive mutants. Two mutations have been found in the proximal region of the gene, which controls the transferase (FAD synthase) activity. Three point mutations and one double mutation have been found (in addition to the two mutations that were detected earlier) in the distal region of the gene, which controls the flavokinase (flavin mononucleotide (FMN) synthase) activity. On the basis of all data known to date, it has been concluded that the identified mutations affect riboflavin and ATP binding sites. No mutations have been found in the PTAN conserved sequence, which forms the magnesium and ATP common binding site and is identical for organisms of all organizational levels, from bacteria too humans.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 16, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off