Murine Stim1 maps to distal Chromosome 7 and is not imprinted

Murine Stim1 maps to distal Chromosome 7 and is not imprinted STIM1 (GOK) maps to a region of human Chromosome (Chr) 11p15.5 that is implicated in several embryonal tumors, and some evidence indicates that STIM1 may have a growth suppressor role in rhabdomyosarcoma. In this study we have mapped the murine homolog, Stim1, to the same position as Hbb on distal mouse Chr 7. This region is separated by 20 cM from the region of distal Chr 7 that contains Igf2, H19, and other imprinted genes. Using strain-specific polymorphisms, we have shown that Stim1 is expressed from both parental alleles in fetal and neonatal mouse tissues. Similar analyses of human Wilms' tumor and normal kidney tissues demonstrated biallelic expression of STIM1 in the majority of samples. These data demonstrate that Stim1 expression is not regulated by genomic imprinting in either mouse or human tissues. Thus, if STIM1 is a tumor suppressor at 11p15.5, loss of expression is not due to imprinting effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Murine Stim1 maps to distal Chromosome 7 and is not imprinted

Loading next page...
 
/lp/springer_journal/murine-stim1-maps-to-distal-chromosome-7-and-is-not-imprinted-Zbl0GOf1co
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900839
Publisher site
See Article on Publisher Site

Abstract

STIM1 (GOK) maps to a region of human Chromosome (Chr) 11p15.5 that is implicated in several embryonal tumors, and some evidence indicates that STIM1 may have a growth suppressor role in rhabdomyosarcoma. In this study we have mapped the murine homolog, Stim1, to the same position as Hbb on distal mouse Chr 7. This region is separated by 20 cM from the region of distal Chr 7 that contains Igf2, H19, and other imprinted genes. Using strain-specific polymorphisms, we have shown that Stim1 is expressed from both parental alleles in fetal and neonatal mouse tissues. Similar analyses of human Wilms' tumor and normal kidney tissues demonstrated biallelic expression of STIM1 in the majority of samples. These data demonstrate that Stim1 expression is not regulated by genomic imprinting in either mouse or human tissues. Thus, if STIM1 is a tumor suppressor at 11p15.5, loss of expression is not due to imprinting effects.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off