Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics

Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics The geology of the “Vence” landslide (0.8 million m3, south-eastern France) explains the complex hydrology of the site which plays a key role in the destabilization of the slope (water circulation within the sliding mass, fluid exchanges between superficial layers and deep karstic aquifer through faults). To understand fluid circulations within the unstable slope, a 9.5-year multi-parametric survey was set up. The survey combines electrical resistivity tomography (daily acquisition), rainfall records since 2006 and boreholes monitoring groundwater level since 2009. The objective of this work is to present an automated clustering analysis applied to the ERT data enabled to locate geological units displaying distinct hydrogeological behaviours. Clustering analysis, based on a hierarchical ascendant classification (HAC), helped to simplify the ERT section isolating three groups of apparent resistivity values. Comparing the variations of these clusters’ behaviours in time to the variations of the groundwater levels on site, we identified hydrogeological units. The role of the faults cutting the substratum is thereby highlighted. It is the simultaneous analysis of such a large real dataset that allowed obtaining robust results characteristic of the long-term behaviour of the natural hydrogeological system. This type of qualitative information on the variability of the slope hydrogeological behaviour both spatially and temporally is crucial to help improving the conversion of resistivity data into hydrologic quantities. Indeed, the definition of petrophysical models to convert ERT measurements into hydrological measurements should be site-specific and take into account the spatial and temporal variability of the medium. In this work, we show a method that can also help to focus on the areas in depth that have different levels of permeability and observe how the saturation degree evolves in time. This can be used to optimize the location of additional instrumentation (such as temperature probes and chemical sampling) and, thus, help in the prevention of the risk in such problematic areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Landslides Springer Journals

Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics

Loading next page...
 
/lp/springer_journal/multiyear-time-lapse-ert-to-study-short-and-long-term-landslide-G7dWONM0jx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Earth Sciences; Natural Hazards; Geography, general; Agriculture; Civil Engineering
ISSN
1612-510X
eISSN
1612-5118
D.O.I.
10.1007/s10346-016-0791-6
Publisher site
See Article on Publisher Site

Abstract

The geology of the “Vence” landslide (0.8 million m3, south-eastern France) explains the complex hydrology of the site which plays a key role in the destabilization of the slope (water circulation within the sliding mass, fluid exchanges between superficial layers and deep karstic aquifer through faults). To understand fluid circulations within the unstable slope, a 9.5-year multi-parametric survey was set up. The survey combines electrical resistivity tomography (daily acquisition), rainfall records since 2006 and boreholes monitoring groundwater level since 2009. The objective of this work is to present an automated clustering analysis applied to the ERT data enabled to locate geological units displaying distinct hydrogeological behaviours. Clustering analysis, based on a hierarchical ascendant classification (HAC), helped to simplify the ERT section isolating three groups of apparent resistivity values. Comparing the variations of these clusters’ behaviours in time to the variations of the groundwater levels on site, we identified hydrogeological units. The role of the faults cutting the substratum is thereby highlighted. It is the simultaneous analysis of such a large real dataset that allowed obtaining robust results characteristic of the long-term behaviour of the natural hydrogeological system. This type of qualitative information on the variability of the slope hydrogeological behaviour both spatially and temporally is crucial to help improving the conversion of resistivity data into hydrologic quantities. Indeed, the definition of petrophysical models to convert ERT measurements into hydrological measurements should be site-specific and take into account the spatial and temporal variability of the medium. In this work, we show a method that can also help to focus on the areas in depth that have different levels of permeability and observe how the saturation degree evolves in time. This can be used to optimize the location of additional instrumentation (such as temperature probes and chemical sampling) and, thus, help in the prevention of the risk in such problematic areas.

Journal

LandslidesSpringer Journals

Published: Jan 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off