Multipoint temperature measurements in gas flows using 1-D laser-induced grating scattering

Multipoint temperature measurements in gas flows using 1-D laser-induced grating scattering A technique is reported for simultaneous, time- and space-resolved measurements of temperature using laser-induced thermal grating scattering, LITGS, from four points on a 1-D line. Signals from four separate points on the line, separated by 1 mm, in toluene-seeded nitrogen flows, were imaged onto a fibre-optic array and delivered to separate photodiode detectors to record their temporal evolution from which the temperatures at each point were derived with a spatial resolution of 1 mm and a precision of 0.7% at atmospheric pressure. Effects of variation of composition on the accuracy of the measurements were compensated by a calibration method providing good agreement with values inferred from thermocouple measurements. Temperature gradients at the boundary between parallel gas flows and at the surface of hot and cold surfaces were measured with a resolution of 5 K mm−1. Extension of the technique to more measurement points and improvements in spatial resolution are briefly discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Multipoint temperature measurements in gas flows using 1-D laser-induced grating scattering

Loading next page...
 
/lp/springer_journal/multipoint-temperature-measurements-in-gas-flows-using-1-d-laser-R6aFxfKb0D
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2282-x
Publisher site
See Article on Publisher Site

Abstract

A technique is reported for simultaneous, time- and space-resolved measurements of temperature using laser-induced thermal grating scattering, LITGS, from four points on a 1-D line. Signals from four separate points on the line, separated by 1 mm, in toluene-seeded nitrogen flows, were imaged onto a fibre-optic array and delivered to separate photodiode detectors to record their temporal evolution from which the temperatures at each point were derived with a spatial resolution of 1 mm and a precision of 0.7% at atmospheric pressure. Effects of variation of composition on the accuracy of the measurements were compensated by a calibration method providing good agreement with values inferred from thermocouple measurements. Temperature gradients at the boundary between parallel gas flows and at the surface of hot and cold surfaces were measured with a resolution of 5 K mm−1. Extension of the technique to more measurement points and improvements in spatial resolution are briefly discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 22, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off