Multiplicative modelling of four-phase microbial growth

Multiplicative modelling of four-phase microbial growth Microbial growth curves, recording the four-phases (lag, growth, stationary, decay) of the dynamics of the surviving microbes, are regularly used to support decision-making in a wide variety of health related activities including food safety and pharmaceutical manufacture. Often, the decision-making reduces to a simple comparison of some particular feature of the four-phases, such as the time at which the number of surviving microbes reaches a maximum. Consequently, in order to obtain accurate estimates of such features, the first step is the determination, from experimental measurements, of a quantitative characterization (model) of the four-phases of the growth-decay dynamics involved, which is then used to determine the values of the features. The multiplicative model proposed by Peleg and colleagues is ideal for such purposes as it only involves four parameters which can be interpreted biologically. For the determination of the four parameters in this multiplicative model from observational data, an iterative two-stage linear least squares algorithm is proposed in this paper. Its robustness, which is essential to support successful comparative assessment, is assessed using synthetic data and validated using experimental data. In addition, for the multiplicative model, an analytic formula is derived for estimating the average lifetimes of the surviving microbes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pacific Journal of Mathematics for Industry Springer Journals

Loading next page...
 
/lp/springer_journal/multiplicative-modelling-of-four-phase-microbial-growth-tGTV777FGO
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Munoz-Lopez et al.
Subject
Mathematics; Applications of Mathematics; Quantitative Finance; Mathematical Applications in Computer Science; Mathematical Applications in the Physical Sciences; Mathematical Modeling and Industrial Mathematics; Math Applications in Computer Science
eISSN
2198-4115
D.O.I.
10.1186/s40736-015-0018-0
Publisher site
See Article on Publisher Site

Abstract

Microbial growth curves, recording the four-phases (lag, growth, stationary, decay) of the dynamics of the surviving microbes, are regularly used to support decision-making in a wide variety of health related activities including food safety and pharmaceutical manufacture. Often, the decision-making reduces to a simple comparison of some particular feature of the four-phases, such as the time at which the number of surviving microbes reaches a maximum. Consequently, in order to obtain accurate estimates of such features, the first step is the determination, from experimental measurements, of a quantitative characterization (model) of the four-phases of the growth-decay dynamics involved, which is then used to determine the values of the features. The multiplicative model proposed by Peleg and colleagues is ideal for such purposes as it only involves four parameters which can be interpreted biologically. For the determination of the four parameters in this multiplicative model from observational data, an iterative two-stage linear least squares algorithm is proposed in this paper. Its robustness, which is essential to support successful comparative assessment, is assessed using synthetic data and validated using experimental data. In addition, for the multiplicative model, an analytic formula is derived for estimating the average lifetimes of the surviving microbes.

Journal

Pacific Journal of Mathematics for IndustrySpringer Journals

Published: Oct 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off