Multiple KCNQ Potassium Channel Subtypes Mediate Basal Anion Secretion from the Human Airway Epithelial Cell Line Calu-3

Multiple KCNQ Potassium Channel Subtypes Mediate Basal Anion Secretion from the Human Airway... Potassium channels play an important role in providing a driving force for anion secretion from secretory epithelia. To investigate the role of KCNQ K+ channels in mediating rates of basal anion secretion across the human airway submucosal gland serous cell model, the Calu-3 cell, we examined the expression, localization and function of these channels. In addition to our previous knowledge that Calu-3 cells express KCNQ1, using reverse transcriptase polymerase chain reaction we determined expression of KCNQ3, KCNQ4 and KCNQ5 mRNA transcripts. Immunoblotting detected KCNQ1, KCNQ3 and KCNQ5 proteins, while KCNQ4 protein was not found. Immunolocalization using polarized Calu-3 cell monolayers revealed that KCNQ1 and KCNQ3 were located in or toward the apical membrane of the cells, while KCNQ5 was detected in the apical and lateral membranes. Transepithelial transport studies revealed a small chromanol 293B-sensitive current at the apical membrane, likely KCNQ1. Application of XE991, an inhibitor of all members of the KCNQ channel family, inhibited the basal short-circuit current when applied to both sides of the cells to a greater extent than 293B, with the largest inhibition seen upon apical application. This result was confirmed using linopiridine, a less potent analogue of XE991, and suggests that functional KCNQ3 and KCNQ5, in addition to KCNQ1, are present at the apical aspect of these cells. These results demonstrate the role of a number of KCNQ channel members in controlling basal anion secretion across Calu-3 cells, while also demonstrating the importance of apically located K+ channels in mediating anion secretion in the airway epithelium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Multiple KCNQ Potassium Channel Subtypes Mediate Basal Anion Secretion from the Human Airway Epithelial Cell Line Calu-3

Loading next page...
 
/lp/springer_journal/multiple-kcnq-potassium-channel-subtypes-mediate-basal-anion-secretion-x4lkNv0RoH
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9093-9
Publisher site
See Article on Publisher Site

Abstract

Potassium channels play an important role in providing a driving force for anion secretion from secretory epithelia. To investigate the role of KCNQ K+ channels in mediating rates of basal anion secretion across the human airway submucosal gland serous cell model, the Calu-3 cell, we examined the expression, localization and function of these channels. In addition to our previous knowledge that Calu-3 cells express KCNQ1, using reverse transcriptase polymerase chain reaction we determined expression of KCNQ3, KCNQ4 and KCNQ5 mRNA transcripts. Immunoblotting detected KCNQ1, KCNQ3 and KCNQ5 proteins, while KCNQ4 protein was not found. Immunolocalization using polarized Calu-3 cell monolayers revealed that KCNQ1 and KCNQ3 were located in or toward the apical membrane of the cells, while KCNQ5 was detected in the apical and lateral membranes. Transepithelial transport studies revealed a small chromanol 293B-sensitive current at the apical membrane, likely KCNQ1. Application of XE991, an inhibitor of all members of the KCNQ channel family, inhibited the basal short-circuit current when applied to both sides of the cells to a greater extent than 293B, with the largest inhibition seen upon apical application. This result was confirmed using linopiridine, a less potent analogue of XE991, and suggests that functional KCNQ3 and KCNQ5, in addition to KCNQ1, are present at the apical aspect of these cells. These results demonstrate the role of a number of KCNQ channel members in controlling basal anion secretion across Calu-3 cells, while also demonstrating the importance of apically located K+ channels in mediating anion secretion in the airway epithelium.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 9, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off