Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multiple isomerization of structural units in ion-polymeric heteronuclear gold(III)–zinc(II) complex ([Au{S2CN(C4H9)2}2]2[ZnCl4])n: Chemisorption-based synthesis, supramolecular structure (self-organization of long-period cation–cationic polymer chains), and thermal behavior

Multiple isomerization of structural units in ion-polymeric heteronuclear gold(III)–zinc(II)... Chemisorption of gold(III) from solutions in 2 M HCl with freshly precipitated binuclear zinc dithiocarbamate [Zn2{S2CN(C4H9)2}4] resulted in the formation of a polymeric heteronuclear gold(III)–zinc(II) dithiocarbamato-chlorido complex ([Au{S2CN(C4H9)2}2]2[ZnCl4]) n (I), which was characterized by MAS 13C NMR, X-ray diffraction (CIF file CCDC no. 1526616), and simultaneous thermal analysis. Compound I isolated on a preparative scale was found to have a highly intricate supramolecular structure composed of 13 centrosymmetric and non-centrosymmetric isomeric complex cations, [Au{S2CN(C4H9)2}2]+, with 24 structurally non-equivalent BuDtc ligands, and six isomeric [ZnCl4]2– anions. The isomeric gold(III) cations perform different structural functions. Four and six cations are involved in the formation of two sorts of long-period cation–cationic chains (via pair non-valence secondary Au···S bonds): (···A···B···C···D···C···B···) n and (···F···G···H···I···J···K···) n . The discrete E, L, and M cations and the [ZnCl4]2– complex anions are located alongside of the polymer chains and do not take part in the secondary interactions. According to simultaneous thermal analysis, thermolysis of I includes destruction of the dithiocarbamate moiety with reduction of gold to the metal in the cation and liberation of zinc chloride with partial conversion to ZnS in the anion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Coordination Chemistry Springer Journals

Multiple isomerization of structural units in ion-polymeric heteronuclear gold(III)–zinc(II) complex ([Au{S2CN(C4H9)2}2]2[ZnCl4])n: Chemisorption-based synthesis, supramolecular structure (self-organization of long-period cation–cationic polymer chains), and thermal behavior

Loading next page...
 
/lp/springer_journal/multiple-isomerization-of-structural-units-in-ion-polymeric-f6nE8de5q6

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Physical Chemistry; Inorganic Chemistry
ISSN
1070-3284
eISSN
1608-3318
DOI
10.1134/S1070328417080036
Publisher site
See Article on Publisher Site

Abstract

Chemisorption of gold(III) from solutions in 2 M HCl with freshly precipitated binuclear zinc dithiocarbamate [Zn2{S2CN(C4H9)2}4] resulted in the formation of a polymeric heteronuclear gold(III)–zinc(II) dithiocarbamato-chlorido complex ([Au{S2CN(C4H9)2}2]2[ZnCl4]) n (I), which was characterized by MAS 13C NMR, X-ray diffraction (CIF file CCDC no. 1526616), and simultaneous thermal analysis. Compound I isolated on a preparative scale was found to have a highly intricate supramolecular structure composed of 13 centrosymmetric and non-centrosymmetric isomeric complex cations, [Au{S2CN(C4H9)2}2]+, with 24 structurally non-equivalent BuDtc ligands, and six isomeric [ZnCl4]2– anions. The isomeric gold(III) cations perform different structural functions. Four and six cations are involved in the formation of two sorts of long-period cation–cationic chains (via pair non-valence secondary Au···S bonds): (···A···B···C···D···C···B···) n and (···F···G···H···I···J···K···) n . The discrete E, L, and M cations and the [ZnCl4]2– complex anions are located alongside of the polymer chains and do not take part in the secondary interactions. According to simultaneous thermal analysis, thermolysis of I includes destruction of the dithiocarbamate moiety with reduction of gold to the metal in the cation and liberation of zinc chloride with partial conversion to ZnS in the anion.

Journal

Russian Journal of Coordination ChemistrySpringer Journals

Published: Aug 19, 2017

There are no references for this article.