Multipath restoration and bitrate squeezing in SDN-based elastic optical networks [Invited]

Multipath restoration and bitrate squeezing in SDN-based elastic optical networks [Invited] Sliceable bandwidth-variable transponders (SBVTs) enable the adaptation of transmission parameters according to traffic requirements and network constraints. In this study, SBVTs capabilities are evaluated in the context of restoration. In particular, multipath recovery and bitrate squeezing are applied to maximize the amount of restored bitrate, also exploiting limited portions of spectrum resources along multiple routes. An integer linear programming model and heuristic strategy are proposed. A software defined network (SDN) architecture is then introduced to adequately support the SBVT configuration. The SDN architecture is applied to experimentally assess that the overall re-configuration time upon failure detection is included within two seconds, largely dominated by the proprietary control of bandwidth-variable optical cross-connects. Finally, extensive simulation results show the relevant restoration capabilities achieved by the proposed multipath recovery and bitrate squeezing scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Multipath restoration and bitrate squeezing in SDN-based elastic optical networks [Invited]

Loading next page...
 
/lp/springer_journal/multipath-restoration-and-bitrate-squeezing-in-sdn-based-elastic-GGyhYYgU4s
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-014-0444-4
Publisher site
See Article on Publisher Site

Abstract

Sliceable bandwidth-variable transponders (SBVTs) enable the adaptation of transmission parameters according to traffic requirements and network constraints. In this study, SBVTs capabilities are evaluated in the context of restoration. In particular, multipath recovery and bitrate squeezing are applied to maximize the amount of restored bitrate, also exploiting limited portions of spectrum resources along multiple routes. An integer linear programming model and heuristic strategy are proposed. A software defined network (SDN) architecture is then introduced to adequately support the SBVT configuration. The SDN architecture is applied to experimentally assess that the overall re-configuration time upon failure detection is included within two seconds, largely dominated by the proprietary control of bandwidth-variable optical cross-connects. Finally, extensive simulation results show the relevant restoration capabilities achieved by the proposed multipath recovery and bitrate squeezing scheme.

Journal

Photonic Network CommunicationsSpringer Journals

Published: May 22, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off