Multipartite entangled magnon states as quantum communication channels

Multipartite entangled magnon states as quantum communication channels We investigate the entanglement properties of the two magnon states and explicate conditions under which, the two magnon state becomes useful for several quantum communication protocols. We systematically study the temporal behaviour of concurrence to find out the effect of exchange interaction on entanglement. The two magnon state, which is potentially realizable in quantum dots using Heisenberg exchange interaction, is found to be suitable for carrying out deterministic teleportation of an arbitrary two qubit composite system. Further, conditions for which the channel capacity reaches “Holevo bound”, allowing four classical bits to be transmitted through two qubits are derived. Later, an unconventional protocol is given to demonstrate that this state can be used for sharing of a two qubit entangled state among two parties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Multipartite entangled magnon states as quantum communication channels

Loading next page...
 
/lp/springer_journal/multipartite-entangled-magnon-states-as-quantum-communication-channels-DVzj5QnGRo
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Physics, general; Theoretical, Mathematical and Computational Physics; Quantum Physics; Computer Science, general; Mathematics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0252-z
Publisher site
See Article on Publisher Site

Abstract

We investigate the entanglement properties of the two magnon states and explicate conditions under which, the two magnon state becomes useful for several quantum communication protocols. We systematically study the temporal behaviour of concurrence to find out the effect of exchange interaction on entanglement. The two magnon state, which is potentially realizable in quantum dots using Heisenberg exchange interaction, is found to be suitable for carrying out deterministic teleportation of an arbitrary two qubit composite system. Further, conditions for which the channel capacity reaches “Holevo bound”, allowing four classical bits to be transmitted through two qubits are derived. Later, an unconventional protocol is given to demonstrate that this state can be used for sharing of a two qubit entangled state among two parties.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 12, 2011

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A.; Podolsky, B.; Rosen, N.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off