Multilevel Multivariate Meta-analysis with Application to Choice Overload

Multilevel Multivariate Meta-analysis with Application to Choice Overload We introduce multilevel multivariate meta-analysis methodology designed to account for the complexity of contemporary psychological research data. Our methodology directly models the observations from a set of studies in a manner that accounts for the variation and covariation induced by the facts that observations differ in their dependent measures and moderators and are nested within, for example, papers, studies, groups of subjects, and study conditions. Our methodology is motivated by data from papers and studies of the choice overload hypothesis. It more fully accounts for the complexity of choice overload data relative to two prior meta-analyses and thus provides richer insight. In particular, it shows that choice overload varies substantially as a function of the six dependent measures and four moderators examined in the domain and that there are potentially interesting and theoretically important interactions among them. It also shows that the various dependent measures have differing levels of variation and that levels up to and including the highest (i.e., the fifth, or paper, level) are necessary to capture the variation and covariation induced by the nesting structure. Our results have substantial implications for future studies of choice overload. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

Multilevel Multivariate Meta-analysis with Application to Choice Overload

Loading next page...
 
/lp/springer_journal/multilevel-multivariate-meta-analysis-with-application-to-choice-j5BPTILLay
Publisher
Springer US
Copyright
Copyright © 2017 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-017-9571-z
Publisher site
See Article on Publisher Site

Abstract

We introduce multilevel multivariate meta-analysis methodology designed to account for the complexity of contemporary psychological research data. Our methodology directly models the observations from a set of studies in a manner that accounts for the variation and covariation induced by the facts that observations differ in their dependent measures and moderators and are nested within, for example, papers, studies, groups of subjects, and study conditions. Our methodology is motivated by data from papers and studies of the choice overload hypothesis. It more fully accounts for the complexity of choice overload data relative to two prior meta-analyses and thus provides richer insight. In particular, it shows that choice overload varies substantially as a function of the six dependent measures and four moderators examined in the domain and that there are potentially interesting and theoretically important interactions among them. It also shows that the various dependent measures have differing levels of variation and that levels up to and including the highest (i.e., the fifth, or paper, level) are necessary to capture the variation and covariation induced by the nesting structure. Our results have substantial implications for future studies of choice overload.

Journal

PsychometrikaSpringer Journals

Published: May 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off