Multilayer traffic engineering for energy efficiency

Multilayer traffic engineering for energy efficiency Automatically switched multilayer IP-over-optical networks offer extensive flexibility in adapting the network to offered IP/MPLS traffic. Multilayer traffic engineering (MLTE) takes advantage of this through online IP logical topology reconfiguration in addition to the more traditional rerouting. The main goal of MLTE is to optimize toward resource usage, bandwidth throughput and QoS performance. However, energy efficiency of ICT infrastructure and the network in particular more recently have become an important aspect as well. In this article, we will look how MLTE helps in improving network energy efficiency. For this we will explain how optimization toward power requirement relates to the traditional resource usage minimization objective, and how power requirement in the network can be modeled for the MLTE algorithm. We will discuss two cases where the merit of MLTE for energy efficiency is discussed. Firstly, we will examine the interaction of MLTE with hardware-based energy efficiency optimization techniques; for this we look at scaling back power requirements through the use of better chip technology, but also decreasing idle-power requirement only, using improved chip architecture. Secondly, as MLTE allows for fast responses to changing traffic, we will see how link switch-off during off-peak hours offers a straightforward option to reduce energy needs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Multilayer traffic engineering for energy efficiency

Loading next page...
 
/lp/springer_journal/multilayer-traffic-engineering-for-energy-efficiency-6cOarpORKM
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0287-6
Publisher site
See Article on Publisher Site

Abstract

Automatically switched multilayer IP-over-optical networks offer extensive flexibility in adapting the network to offered IP/MPLS traffic. Multilayer traffic engineering (MLTE) takes advantage of this through online IP logical topology reconfiguration in addition to the more traditional rerouting. The main goal of MLTE is to optimize toward resource usage, bandwidth throughput and QoS performance. However, energy efficiency of ICT infrastructure and the network in particular more recently have become an important aspect as well. In this article, we will look how MLTE helps in improving network energy efficiency. For this we will explain how optimization toward power requirement relates to the traditional resource usage minimization objective, and how power requirement in the network can be modeled for the MLTE algorithm. We will discuss two cases where the merit of MLTE for energy efficiency is discussed. Firstly, we will examine the interaction of MLTE with hardware-based energy efficiency optimization techniques; for this we look at scaling back power requirements through the use of better chip technology, but also decreasing idle-power requirement only, using improved chip architecture. Secondly, as MLTE allows for fast responses to changing traffic, we will see how link switch-off during off-peak hours offers a straightforward option to reduce energy needs.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 10, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off