Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles

Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles Combining two or more materials for carrier construction is one of the topical approaches to avoid/diminish deficiencies and to increase functionality in delivery systems for bioactive compounds. In this context, here, multilayered nanoparticles comprising both natural (atelocollagen—AteCol; hyaluronic acid derivative—HA) and synthetic [poly(ε-caprolactone)—PCL; polyethylenimine—PEI; poly(l-lysine)—PLL] polymers were prepared and characterized. The combination of a modified double-emulsion method with polymer modification reactions allowed improvement of the polymer particle’s functionality. Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering, transmission/scanning electron microscopy and fluorescence microscopy investigations confirmed the obtention of the envisaged nanomaterials with the expected composition and structure. The double-layered biopolymer/PCL-based nanoparticles formed in a first synthesis step could be successfully coated with PEI and PLL. The gel electrophoresis assay attested the DNA packing ability of the formed nano-vehicles involving surface grafting of the former biopolymer/PCL-based nanoparticles in the case of both cationic polymers, for N/P ratios of 10 (PEI coating) and 3.5 (PLL coating), respectively. According to the FTIR registration, the protein’s native form was preserved. Considering the advantage of biocompatibility and high versatility (controlled size, tuned chemistry and biodegradation rate) some of the resulted nanomaterials may appear as potential candidates for biomedical uses (i.e., drug/gene delivery and tissue engineering). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Iranian Polymer Journal Springer Journals

Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles

Loading next page...
 
/lp/springer_journal/multilayer-biopolymer-poly-caprolactone-polycation-nanoparticles-io0QRJNfzQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Iran Polymer and Petrochemical Institute
Subject
Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials
ISSN
1026-1265
eISSN
1735-5265
D.O.I.
10.1007/s13726-018-0629-2
Publisher site
See Article on Publisher Site

Abstract

Combining two or more materials for carrier construction is one of the topical approaches to avoid/diminish deficiencies and to increase functionality in delivery systems for bioactive compounds. In this context, here, multilayered nanoparticles comprising both natural (atelocollagen—AteCol; hyaluronic acid derivative—HA) and synthetic [poly(ε-caprolactone)—PCL; polyethylenimine—PEI; poly(l-lysine)—PLL] polymers were prepared and characterized. The combination of a modified double-emulsion method with polymer modification reactions allowed improvement of the polymer particle’s functionality. Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering, transmission/scanning electron microscopy and fluorescence microscopy investigations confirmed the obtention of the envisaged nanomaterials with the expected composition and structure. The double-layered biopolymer/PCL-based nanoparticles formed in a first synthesis step could be successfully coated with PEI and PLL. The gel electrophoresis assay attested the DNA packing ability of the formed nano-vehicles involving surface grafting of the former biopolymer/PCL-based nanoparticles in the case of both cationic polymers, for N/P ratios of 10 (PEI coating) and 3.5 (PLL coating), respectively. According to the FTIR registration, the protein’s native form was preserved. Considering the advantage of biocompatibility and high versatility (controlled size, tuned chemistry and biodegradation rate) some of the resulted nanomaterials may appear as potential candidates for biomedical uses (i.e., drug/gene delivery and tissue engineering).

Journal

Iranian Polymer JournalSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off