Multifractality in fidelity sequences of optimized Toffoli gates

Multifractality in fidelity sequences of optimized Toffoli gates We analyze the multifractality in the fidelity sequences of several engineered Toffoli gates. Using quantum control methods, we consider several optimization problems whose global solutions realize the gate in a chain of three qubits with XY Heisenberg interaction. Applying a minimum number of control pulses assuring a fidelity above 99 % in the ideal case, we design stable gates that are less sensitive to variations in the interqubits couplings. The most stable gate has the fidelity above 91 % with variations about 0.1 %, for up to 10 % variation in the nominal couplings. We perturb the system by introducing a single source of 1 / f noise that affects all the couplings. In order to quantify the performance of the proposed optimized gates, we calculate the fidelity of a large set of optimized gates under prescribed levels of coupling perturbation. Then, we run multifractal analysis on the sequence of attained fidelities. This way, gate performance can be assessed beyond mere average results, since the chosen multifractality measure (the width of the multifractal spectrum) encapsulates into a single performance indicator the spread of fidelity values around the mean and the presence of outliers. The higher the value of the performance indicator the more concentrated around the mean the fidelity values are and rarer is the occurrence of outliers. The results of the multifractal analysis on the fidelity sequences demonstrate the effectiveness of the proposed optimized gate implementations, in the sense they are rendered less sensitive to variations in the interqubits coupling strengths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Multifractality in fidelity sequences of optimized Toffoli gates

Loading next page...
 
/lp/springer_journal/multifractality-in-fidelity-sequences-of-optimized-toffoli-gates-9eAsCnamvc
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1409-6
Publisher site
See Article on Publisher Site

Abstract

We analyze the multifractality in the fidelity sequences of several engineered Toffoli gates. Using quantum control methods, we consider several optimization problems whose global solutions realize the gate in a chain of three qubits with XY Heisenberg interaction. Applying a minimum number of control pulses assuring a fidelity above 99 % in the ideal case, we design stable gates that are less sensitive to variations in the interqubits couplings. The most stable gate has the fidelity above 91 % with variations about 0.1 %, for up to 10 % variation in the nominal couplings. We perturb the system by introducing a single source of 1 / f noise that affects all the couplings. In order to quantify the performance of the proposed optimized gates, we calculate the fidelity of a large set of optimized gates under prescribed levels of coupling perturbation. Then, we run multifractal analysis on the sequence of attained fidelities. This way, gate performance can be assessed beyond mere average results, since the chosen multifractality measure (the width of the multifractal spectrum) encapsulates into a single performance indicator the spread of fidelity values around the mean and the presence of outliers. The higher the value of the performance indicator the more concentrated around the mean the fidelity values are and rarer is the occurrence of outliers. The results of the multifractal analysis on the fidelity sequences demonstrate the effectiveness of the proposed optimized gate implementations, in the sense they are rendered less sensitive to variations in the interqubits coupling strengths.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off