Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami

Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami With uncertainty quantification, we aim to efficiently propagate the uncertainties in the input parameters of a computer simulation, in order to obtain a probability distribution of its output. In this work, we use multi-fidelity sparse grid interpolation to propagate the uncertainty in the shape of the incoming wave for the Okushiri test-case, which is a wave tank model of a part of the 1993 Hokkaido Nansei-oki tsunami. An important issue with many uncertainty quantification approaches is the ‘curse of dimensionality’: the overall computational cost of the uncertainty propagation increases rapidly when we increase the number of uncertain input parameters. We aim to mitigate the curse of dimensionality by using a multifidelity approach. In the multifidelity approach, we combine results from a small number of accurate and expensive high-fidelity simulations with a large number of less accurate but also less expensive low-fidelity simulations. For the Okushiri test-case, we find an improved scaling when we increase the number of uncertain input parameters. This results in a significant reduction of the overall computational cost. For example, for four uncertain input parameters, accurate uncertainty quantification based on only high-fidelity simulations comes at a normalised cost of 219 high-fidelity simulations; when we use a multifidelity approach, this is reduced to a normalised cost of only 10 high-fidelity simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pure and Applied Geophysics Springer Journals

Multifidelity Sparse-Grid-Based Uncertainty Quantification for the Hokkaido Nansei-oki Tsunami

Loading next page...
 
/lp/springer_journal/multifidelity-sparse-grid-based-uncertainty-quantification-for-the-259I61VkoP
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Earth Sciences; Geophysics/Geodesy
ISSN
0033-4553
eISSN
1420-9136
D.O.I.
10.1007/s00024-017-1606-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial