Multi-variable driving thermal energy control model of dry hobbing machine tool

Multi-variable driving thermal energy control model of dry hobbing machine tool Dry hobbing is a new gear machining process with high efficiency and environmental friendliness, replacing traditional wet hobbing process. However, to get high reliable precision, it is a critical work for the dry hobbing system to reduce and control the thermal impact. Even new hobbing machine tool structure with high thermal stability such as double stand columns was designed to substitute the traditional structure; some new structures, such as air extraction and filtration device, air-cooling component, and magnetic chip conveyor, would affect the thermal energy accumulation of dry hobbing machine tool. In this paper, a multi-variable thermal energy control model was developed to describe the thermal energy accumulation characteristic of dry hobbing machine tool. Variables which would affect thermal energy generation and sink of dry hobbing machine tool are analyzed. A multi-objective optimization algorithm is proposed for variable optimization, combined with the multi-variable thermal energy control model. An application method is presented to show the thermal energy control procedure of dry hobbing machine tool. As a result, the temperature variation of interior space air, workpiece column, and anterior end cover is fluctuated in an acceptable range with optimization. Furthermore, thermal deformation errors, which range from −7 to 3 μm, could meet production requirements. It illustrates that the multi-variable driving thermal energy control model of dry hobbing machine tool is available. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Multi-variable driving thermal energy control model of dry hobbing machine tool

Loading next page...
 
/lp/springer_journal/multi-variable-driving-thermal-energy-control-model-of-dry-hobbing-AwiSPshcTU
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0086-7
Publisher site
See Article on Publisher Site

Abstract

Dry hobbing is a new gear machining process with high efficiency and environmental friendliness, replacing traditional wet hobbing process. However, to get high reliable precision, it is a critical work for the dry hobbing system to reduce and control the thermal impact. Even new hobbing machine tool structure with high thermal stability such as double stand columns was designed to substitute the traditional structure; some new structures, such as air extraction and filtration device, air-cooling component, and magnetic chip conveyor, would affect the thermal energy accumulation of dry hobbing machine tool. In this paper, a multi-variable thermal energy control model was developed to describe the thermal energy accumulation characteristic of dry hobbing machine tool. Variables which would affect thermal energy generation and sink of dry hobbing machine tool are analyzed. A multi-objective optimization algorithm is proposed for variable optimization, combined with the multi-variable thermal energy control model. An application method is presented to show the thermal energy control procedure of dry hobbing machine tool. As a result, the temperature variation of interior space air, workpiece column, and anterior end cover is fluctuated in an acceptable range with optimization. Furthermore, thermal deformation errors, which range from −7 to 3 μm, could meet production requirements. It illustrates that the multi-variable driving thermal energy control model of dry hobbing machine tool is available.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off