Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using satellite time series?

Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using... Within-field spatial variability is related to multiple factors that can be time-independent or time-dependent. In this study, our working hypothesis is that a multi-time scale analysis of the dynamics of spatial patterns can help establish a diagnosis of crop condition. To test this hypothesis, we analyzed the within-field variability of a sugarcane crop at seasonal and annual time scales, and tried to link this variability to environmental (climate, topography, and soil depth) and cropping (harvest date) factors. The analysis was based on a sugarcane field vegetation index (NDVI) time series of fifteen SPOT images acquired in the French West Indies (Guadeloupe) in 2002 and 2003, and on an original classification method that enabled us to focus on crop spatial variability independently of crop growth stages. We showed that at the seasonal scale, the within-field growth pattern depended on the phenological stage of the crop and on cropping operations. At the annual scale, NDVI maps revealed a stable pattern for the two consecutive years at peak vegetation, despite very different rainfall amounts, but with inverse NDVI values. This inversion is linked with the topography and consequently to the plant water status. We conclude that (1) it is necessary to know the crop growing cycle to correctly interpret the spatial pattern, (2) single-date images may be insufficient for the diagnosis of crop condition or for prediction, and (3) the pattern of vigour occurrence within fields can help diagnose growth anomalies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Multi-time scale analysis of sugarcane within-field variability: improved crop diagnosis using satellite time series?

Loading next page...
 
/lp/springer_journal/multi-time-scale-analysis-of-sugarcane-within-field-variability-1wY0WrfLUQ
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9063-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial