Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow

Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near... This investigation compared the application and accuracy of single- and multi-time-delay linear stochastic estimation-proper orthogonal decomposition (LSE-POD) methods in the temporal domain. These methods were considered for low-dimensional estimations of the dynamics of the energy-containing structures in a high Reynolds number flow. The near wake dynamics of a bluff body were used to demonstrate the robustness and accuracy of the investigated LSE-POD methods. Statistically independent two-dimensional particle image velocimetry (PIV) measurements were used to determine spatial POD modes, and time-resolved surface pressure measurements were used to determine LSE coefficients required for estimating the time-varying POD coefficients. A low-order, time-resolved reconstruction of the wake dynamics was accomplished using these estimated time-varying POD coefficients. The paper also provides details concerning the accuracy of the estimation using multi-time-delay LSE-POD. The results demonstrate that the multi-time LSE-POD technique is successful in capturing and reconstructing the important near wake dynamics. It is also shown that optimizing the time delays used for the estimations increases the accuracy of the reconstruction. As a result of its capabilities, the multi-time-delay implementation of the LSE-POD approach offers an alternate method for low-dimensional modeling that is attractive for real-time flow estimation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow

Loading next page...
 
/lp/springer_journal/multi-time-delay-lse-pod-complementary-approach-applied-to-unsteady-0I0iSj0Y5d
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0821-4
Publisher site
See Article on Publisher Site

Abstract

This investigation compared the application and accuracy of single- and multi-time-delay linear stochastic estimation-proper orthogonal decomposition (LSE-POD) methods in the temporal domain. These methods were considered for low-dimensional estimations of the dynamics of the energy-containing structures in a high Reynolds number flow. The near wake dynamics of a bluff body were used to demonstrate the robustness and accuracy of the investigated LSE-POD methods. Statistically independent two-dimensional particle image velocimetry (PIV) measurements were used to determine spatial POD modes, and time-resolved surface pressure measurements were used to determine LSE coefficients required for estimating the time-varying POD coefficients. A low-order, time-resolved reconstruction of the wake dynamics was accomplished using these estimated time-varying POD coefficients. The paper also provides details concerning the accuracy of the estimation using multi-time-delay LSE-POD. The results demonstrate that the multi-time LSE-POD technique is successful in capturing and reconstructing the important near wake dynamics. It is also shown that optimizing the time delays used for the estimations increases the accuracy of the reconstruction. As a result of its capabilities, the multi-time-delay implementation of the LSE-POD approach offers an alternate method for low-dimensional modeling that is attractive for real-time flow estimation.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 9, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off