Multi-stratum resources resilience in software defined data center interconnection based on IP over elastic optical networks

Multi-stratum resources resilience in software defined data center interconnection based on IP... IP over elastic optical network is a very promising networking architecture to interconnect data centers. It can enable efficient resource utilization and support heterogeneous bandwidth demands in cost-effective, highly available, and energy-effective manner. In case of aggregation elastic optical network node failure, to ensure a high-level quality of service for user request after the failure becomes a research focus. In this paper, we present a novel multi-stratum resources resilience (MSRR) architecture for the data center services in software defined data center interconnection based on IP over elastic optical networks. The MSRR can enable joint optimization of IP network, elastic optical network, and application stratum resources, and enhance the service resilience and the data center responsiveness to the dynamic end-to-end service demands. Additionally, a service-aware resource collaborative resilience strategy for MSRR is introduced based on the proposed architecture, which can provide the restoration using the multiple stratums resources in case of failure. The overall feasibility and efficiency of the proposed architecture are experimentally verified on our testbed. Moreover, the network performances are quantitatively evaluated through the simulation under heavy traffic load scenario in terms of path blocking probability, resource occupation rate, and path resilience latency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Multi-stratum resources resilience in software defined data center interconnection based on IP over elastic optical networks

Loading next page...
 
/lp/springer_journal/multi-stratum-resources-resilience-in-software-defined-data-center-x5xX8L5tak
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-014-0440-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial