Multi-spectral radiometry to estimate pasture quality components

Multi-spectral radiometry to estimate pasture quality components Multi-spectral remote sensing of green vegetation provides an opportunity for assessing biophysical and biochemical properties. This technique could play a crucial role in pasture management by providing the means to evaluate pasture quality in situ. In this study, the potential of a 16-channel multi-spectral radiometer (MSR) for predicting pasture quality, crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, dietary cation–anion difference (DCAD), lignin, lipid, metabolisable energy (ME) and organic matter digestibility (OMD) was evaluated. In situ canopy spectral reflectance was acquired from mixed pastures, under commercial farm conditions in New Zealand. The multi-spectral data were evaluated by single wavelength, linear and non-linear renormalized difference vegetation index (RDVI), and stepwise multiple linear regression (SMLR) models. The selected non-linear, exponential fit, RDVI index models described (0.65 ≤ r 2 ≤ 0.85) of the variation of pasture quality components (CP, DCAD, ME and OMD), while CP, ash, DCAD, lipid, ME and OMD were estimated with moderate accuracy (0.60 ≤ r 2 ≤ 0.80) by the SMLR model. The remaining pasture quality components ADF, NDF and lignin were poorly explained (0.40 ≤ r 2 ≤ 0.58) by the models. This experiment concluded that the MSR has potential to rapidly estimate pasture quality in the field using non-destructive sampling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Multi-spectral radiometry to estimate pasture quality components

Loading next page...
 
/lp/springer_journal/multi-spectral-radiometry-to-estimate-pasture-quality-components-1MwkTDZtLN
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9260-y
Publisher site
See Article on Publisher Site

Abstract

Multi-spectral remote sensing of green vegetation provides an opportunity for assessing biophysical and biochemical properties. This technique could play a crucial role in pasture management by providing the means to evaluate pasture quality in situ. In this study, the potential of a 16-channel multi-spectral radiometer (MSR) for predicting pasture quality, crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, dietary cation–anion difference (DCAD), lignin, lipid, metabolisable energy (ME) and organic matter digestibility (OMD) was evaluated. In situ canopy spectral reflectance was acquired from mixed pastures, under commercial farm conditions in New Zealand. The multi-spectral data were evaluated by single wavelength, linear and non-linear renormalized difference vegetation index (RDVI), and stepwise multiple linear regression (SMLR) models. The selected non-linear, exponential fit, RDVI index models described (0.65 ≤ r 2 ≤ 0.85) of the variation of pasture quality components (CP, DCAD, ME and OMD), while CP, ash, DCAD, lipid, ME and OMD were estimated with moderate accuracy (0.60 ≤ r 2 ≤ 0.80) by the SMLR model. The remaining pasture quality components ADF, NDF and lignin were poorly explained (0.40 ≤ r 2 ≤ 0.58) by the models. This experiment concluded that the MSR has potential to rapidly estimate pasture quality in the field using non-destructive sampling.

Journal

Precision AgricultureSpringer Journals

Published: Mar 2, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off