Multi-party quantum secret sharing with the single-particle quantum state to encode the information

Multi-party quantum secret sharing with the single-particle quantum state to encode the information We present a three-party quantum secret sharing (QSS) scheme via the entangled Greenberger–Horne–Zeilinger state. In this scheme, the sender Alice encodes her arbitrary secret information by means of preparing a single-particle quantum state. The agent Bob obtains his shared information according to his hobby, while Charlie can easily calculate his shared information. The proposed scheme is secure. It is shown that even a dishonest agent, who may avoid the security checking, cannot obtain any useful information. Moreover, we further investigate the multi-party QSS scheme which allows most agents to predetermine their information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Multi-party quantum secret sharing with the single-particle quantum state to encode the information

Loading next page...
 
/lp/springer_journal/multi-party-quantum-secret-sharing-with-the-single-particle-quantum-SSrI0ObiZV
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0379-6
Publisher site
See Article on Publisher Site

Abstract

We present a three-party quantum secret sharing (QSS) scheme via the entangled Greenberger–Horne–Zeilinger state. In this scheme, the sender Alice encodes her arbitrary secret information by means of preparing a single-particle quantum state. The agent Bob obtains his shared information according to his hobby, while Charlie can easily calculate his shared information. The proposed scheme is secure. It is shown that even a dishonest agent, who may avoid the security checking, cannot obtain any useful information. Moreover, we further investigate the multi-party QSS scheme which allows most agents to predetermine their information.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 8, 2012

References

  • Sharing a quantum secret without a trusted party
    Li, Q.; Long, D.Y.; Chan, W.H.; Qiu, D.W.
  • Multi-party quantum state sharing of an arbitrary two-qubit state with bell states
    Shi, R.H.; Huang, L.S.; Yang, W.; Zhong, H.
  • Improving the security of multiparty quantum secret sharing against an attack with a fake signal
    Qin, S.J.; Gao, F.; Wen, Q.Y.; Zhu, F.C.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off