Multi-objective warehouse building design to optimize the cycle time, total cost, and carbon footprint

Multi-objective warehouse building design to optimize the cycle time, total cost, and carbon... Warehouse building design tackles the industrial issue of best studying the overall configuration and dimensions of the storage systems reaching one or more predefined target of performance. This paper proposes a multi-objective model for the warehouse building design to minimize the cycle time, the total cost, and the carbon footprint of the storage system over its lifetime. The goal is to define the overall building dimensions, addressing the target storage capacity and the handling performances, balancing the aforementioned three objective functions. The cycle time computes the average duration of the pickup and drop-off activities, while the system total cost and carbon footprint rise over the entire warehouse lifetime, including the installation and operating phases. The developed model is applied to design the warehouse for an Italian food and beverage company. Results highlight that the total cost and the carbon footprint functions lead to similar warehouse configurations distinguished by a compact vertical structure. On the contrary, the cycle time function takes advantage of a flatter and wider building even if a dramatic increase of the environmental (+40%) and cost (+10%) objective functions occurs. The proposed best balance solution limits the total cost and carbon footprint increment below 1% compared to their single-objective optima, while the cycle time worsening is limited to 4% compared to the optimal cycle time solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Multi-objective warehouse building design to optimize the cycle time, total cost, and carbon footprint

Loading next page...
 
/lp/springer_journal/multi-objective-warehouse-building-design-to-optimize-the-cycle-time-RyqFt4O0Uw
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0157-9
Publisher site
See Article on Publisher Site

Abstract

Warehouse building design tackles the industrial issue of best studying the overall configuration and dimensions of the storage systems reaching one or more predefined target of performance. This paper proposes a multi-objective model for the warehouse building design to minimize the cycle time, the total cost, and the carbon footprint of the storage system over its lifetime. The goal is to define the overall building dimensions, addressing the target storage capacity and the handling performances, balancing the aforementioned three objective functions. The cycle time computes the average duration of the pickup and drop-off activities, while the system total cost and carbon footprint rise over the entire warehouse lifetime, including the installation and operating phases. The developed model is applied to design the warehouse for an Italian food and beverage company. Results highlight that the total cost and the carbon footprint functions lead to similar warehouse configurations distinguished by a compact vertical structure. On the contrary, the cycle time function takes advantage of a flatter and wider building even if a dramatic increase of the environmental (+40%) and cost (+10%) objective functions occurs. The proposed best balance solution limits the total cost and carbon footprint increment below 1% compared to their single-objective optima, while the cycle time worsening is limited to 4% compared to the optimal cycle time solution.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off