Multi-objective parametric query optimization

Multi-objective parametric query optimization Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the multi-objective parametric query optimization (MPQO) problem where query plans are compared according to multiple cost metrics and the cost of a given plan according to a given metric is modeled as a function that depends on multiple parameters. The cost metrics may, for instance, include execution time or monetary fees; a parameter may represent the selectivity of a query predicate that is unspecified at optimization time. MPQO generalizes parametric query optimization (which allows multiple parameters but only one cost metric) and multi-objective query optimization (which allows multiple cost metrics but no parameters). We formally analyze the novel MPQO problem and show why existing algorithms are inapplicable. We present a generic algorithm for MPQO and a specialized version for MPQO with piecewise-linear plan cost functions. We prove that both algorithms find all relevant query plans and experimentally evaluate the performance of our second algorithm in multiple scenarios. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Multi-objective parametric query optimization

, Volume 26 (1) – Aug 18, 2016
18 pages

/lp/springer_journal/multi-objective-parametric-query-optimization-4do1G7j0DE
Publisher
Springer Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0439-0
Publisher site
See Article on Publisher Site

Abstract

Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the multi-objective parametric query optimization (MPQO) problem where query plans are compared according to multiple cost metrics and the cost of a given plan according to a given metric is modeled as a function that depends on multiple parameters. The cost metrics may, for instance, include execution time or monetary fees; a parameter may represent the selectivity of a query predicate that is unspecified at optimization time. MPQO generalizes parametric query optimization (which allows multiple parameters but only one cost metric) and multi-objective query optimization (which allows multiple cost metrics but no parameters). We formally analyze the novel MPQO problem and show why existing algorithms are inapplicable. We present a generic algorithm for MPQO and a specialized version for MPQO with piecewise-linear plan cost functions. We prove that both algorithms find all relevant query plans and experimentally evaluate the performance of our second algorithm in multiple scenarios.

Journal

The VLDB JournalSpringer Journals

Published: Aug 18, 2016

DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations