Multi-links recovery algorithm in survivable WDM optical network

Multi-links recovery algorithm in survivable WDM optical network A new survivable algorithm called Self-organizing Shared-Path Protection (SSPP) is proposed to tolerate multi-link failures in wavelength division multiplexing optical networks. In SSPP, ant agents are used to search primary paths, and load balancing is considered in this approach to reduce blocking probability (BP). In the approach of search backup paths, different backup path ant agents use a same kind pheromone and these ant agents are attracted by each other, so different backup paths share more backup resources. In order to tolerate multi-link failures, self-organizing ant agents search new routes for carrying the traffic affected by the failures. Simulation results show that compared with other algorithms, SSPP has lower BP, better resource utilization ratio, and higher protection ability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Multi-links recovery algorithm in survivable WDM optical network

Loading next page...
 
/lp/springer_journal/multi-links-recovery-algorithm-in-survivable-wdm-optical-network-tJDaNAm04B
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0278-7
Publisher site
See Article on Publisher Site

Abstract

A new survivable algorithm called Self-organizing Shared-Path Protection (SSPP) is proposed to tolerate multi-link failures in wavelength division multiplexing optical networks. In SSPP, ant agents are used to search primary paths, and load balancing is considered in this approach to reduce blocking probability (BP). In the approach of search backup paths, different backup path ant agents use a same kind pheromone and these ant agents are attracted by each other, so different backup paths share more backup resources. In order to tolerate multi-link failures, self-organizing ant agents search new routes for carrying the traffic affected by the failures. Simulation results show that compared with other algorithms, SSPP has lower BP, better resource utilization ratio, and higher protection ability.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 15, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off