Multi-GCMs approach for assessing climate change impact on water resources in Thailand

Multi-GCMs approach for assessing climate change impact on water resources in Thailand Climate-driven floods have severely affected Thailand’s economy in the recent past, indicating the necessity of better water management plans at both watershed and national scale. Corresponding to this, the present paper attempts to address the potential implications of future climate on hydrology at seasonal scale in Thailand. Nine Hydrological Response Units (HRUs) were identified from the whole country based on the similarity in land use and soil properties which were further modelled by HEC-HMS for water resources estimation under climate change. The future precipitation data for SRES A2 and B2 scenarios were derived from five commonly used Global Climate Models (GCMs). Simulation for the dry season implies that the water resources are expected to change from − 17.43 to 54.74%, whereas for the wet season, the projection is expected to vary from − 7.47 to 48.29% relative to the baseline period (1991–2000) irrespective of the scenarios and time windows considered. The uncertainty in water availability projection ranges from 0.78 to 15.78% and 1.87 to 22.35% for the corresponding seasons. At national scale, the decadal water availability ranges from − 5.38 to 13.96% and 0.71 to 30.27% for dry and wet seasons respectively when compared to the baseline period. Similarly, the uncertainty associated ranges from 1.03 to 7.78% and 2.89 to 13.47% for the corresponding seasons. The outcomes of the study emphasize on increased flow both in the HRUs and at the national level and will be helpful in formulating better water management plans to counteract the possible floods in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Modeling Earth Systems and Environment Springer Journals

Multi-GCMs approach for assessing climate change impact on water resources in Thailand

Loading next page...
 
/lp/springer_journal/multi-gcms-approach-for-assessing-climate-change-impact-on-water-8XxH2LB8Ms
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Earth Sciences; Earth System Sciences; Math. Appl. in Environmental Science; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Mathematical Applications in the Physical Sciences; Ecosystems; Environment, general
ISSN
2363-6203
eISSN
2363-6211
D.O.I.
10.1007/s40808-018-0428-y
Publisher site
See Article on Publisher Site

Abstract

Climate-driven floods have severely affected Thailand’s economy in the recent past, indicating the necessity of better water management plans at both watershed and national scale. Corresponding to this, the present paper attempts to address the potential implications of future climate on hydrology at seasonal scale in Thailand. Nine Hydrological Response Units (HRUs) were identified from the whole country based on the similarity in land use and soil properties which were further modelled by HEC-HMS for water resources estimation under climate change. The future precipitation data for SRES A2 and B2 scenarios were derived from five commonly used Global Climate Models (GCMs). Simulation for the dry season implies that the water resources are expected to change from − 17.43 to 54.74%, whereas for the wet season, the projection is expected to vary from − 7.47 to 48.29% relative to the baseline period (1991–2000) irrespective of the scenarios and time windows considered. The uncertainty in water availability projection ranges from 0.78 to 15.78% and 1.87 to 22.35% for the corresponding seasons. At national scale, the decadal water availability ranges from − 5.38 to 13.96% and 0.71 to 30.27% for dry and wet seasons respectively when compared to the baseline period. Similarly, the uncertainty associated ranges from 1.03 to 7.78% and 2.89 to 13.47% for the corresponding seasons. The outcomes of the study emphasize on increased flow both in the HRUs and at the national level and will be helpful in formulating better water management plans to counteract the possible floods in the future.

Journal

Modeling Earth Systems and EnvironmentSpringer Journals

Published: Feb 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off