Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary graph in optical mesh networks

Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary... With the size of traffic demands ranges from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in a cost-effective manner to make sure that the resources are utilized effectively. Therefore, the technique called multi-granularity grooming is proposed to save the cost by reducing the number of switching ports in optical cross-connects. However, the existing multi-granularity grooming algorithms are mostly limited in single-domain optical networks. Since the current optical backbone keeps enlarging and is actually divided to multiple independent domains for achieving the scalability and the confidentiality, it is necessary to study the multi-granularity grooming in multi-domain optical networks. In this paper, we propose a new heuristic algorithm called hierarchical multi-domain multi-granularity grooming (HMMG) based on hierarchical integrated multi-granularity auxiliary graph (H-IMAG) to reduce the total number of optical switching ports. The H-IMAG is composed of the inter-domain virtual topology graph (VTG) and the intra-domain integrated layered auxiliary graph (ILAG), where VTG includes a wavelength virtual topology graph (WVTG) and a waveband virtual topology graph (BVTG), and ILAG includes a wavelength layered auxiliary graph (WLAG) and a waveBand layered auxiliary graph (BLAG). Then, we can groom the sub-wavelength-level demands into lightpaths based on WVTG and WLAG and groom the wavelength-level demands into high-capacity wavebands based on BVTG and BLAG. Simulation results show that performances of H-IMAG can be significantly improved compared with previous algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary graph in optical mesh networks

Loading next page...
 
/lp/springer_journal/multi-domain-grooming-algorithm-based-on-hierarchical-integrated-multi-0H2AcAkUXv
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0351-x
Publisher site
See Article on Publisher Site

Abstract

With the size of traffic demands ranges from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in a cost-effective manner to make sure that the resources are utilized effectively. Therefore, the technique called multi-granularity grooming is proposed to save the cost by reducing the number of switching ports in optical cross-connects. However, the existing multi-granularity grooming algorithms are mostly limited in single-domain optical networks. Since the current optical backbone keeps enlarging and is actually divided to multiple independent domains for achieving the scalability and the confidentiality, it is necessary to study the multi-granularity grooming in multi-domain optical networks. In this paper, we propose a new heuristic algorithm called hierarchical multi-domain multi-granularity grooming (HMMG) based on hierarchical integrated multi-granularity auxiliary graph (H-IMAG) to reduce the total number of optical switching ports. The H-IMAG is composed of the inter-domain virtual topology graph (VTG) and the intra-domain integrated layered auxiliary graph (ILAG), where VTG includes a wavelength virtual topology graph (WVTG) and a waveband virtual topology graph (BVTG), and ILAG includes a wavelength layered auxiliary graph (WLAG) and a waveBand layered auxiliary graph (BLAG). Then, we can groom the sub-wavelength-level demands into lightpaths based on WVTG and WLAG and groom the wavelength-level demands into high-capacity wavebands based on BVTG and BLAG. Simulation results show that performances of H-IMAG can be significantly improved compared with previous algorithm.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 7, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off