Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary graph in optical mesh networks

Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary... With the size of traffic demands ranges from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in a cost-effective manner to make sure that the resources are utilized effectively. Therefore, the technique called multi-granularity grooming is proposed to save the cost by reducing the number of switching ports in optical cross-connects. However, the existing multi-granularity grooming algorithms are mostly limited in single-domain optical networks. Since the current optical backbone keeps enlarging and is actually divided to multiple independent domains for achieving the scalability and the confidentiality, it is necessary to study the multi-granularity grooming in multi-domain optical networks. In this paper, we propose a new heuristic algorithm called hierarchical multi-domain multi-granularity grooming (HMMG) based on hierarchical integrated multi-granularity auxiliary graph (H-IMAG) to reduce the total number of optical switching ports. The H-IMAG is composed of the inter-domain virtual topology graph (VTG) and the intra-domain integrated layered auxiliary graph (ILAG), where VTG includes a wavelength virtual topology graph (WVTG) and a waveband virtual topology graph (BVTG), and ILAG includes a wavelength layered auxiliary graph (WLAG) and a waveBand layered auxiliary graph (BLAG). Then, we can groom the sub-wavelength-level demands into lightpaths based on WVTG and WLAG and groom the wavelength-level demands into high-capacity wavebands based on BVTG and BLAG. Simulation results show that performances of H-IMAG can be significantly improved compared with previous algorithm. Photonic Network Communications Springer Journals

Multi-domain grooming algorithm based on hierarchical integrated multi-granularity auxiliary graph in optical mesh networks

Loading next page...
Springer US
Copyright © 2011 by Springer Science+Business Media, LLC
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial