Multi-dimensional top- k dominating queries

Multi-dimensional top- k dominating queries The top- k dominating query returns k data objects which dominate the highest number of objects in a dataset. This query is an important tool for decision support since it provides data analysts an intuitive way for finding significant objects. In addition, it combines the advantages of top- k and skyline queries without sharing their disadvantages: (i) the output size can be controlled, (ii) no ranking functions need to be specified by users, and (iii) the result is independent of the scales at different dimensions. Despite their importance, top- k dominating queries have not received adequate attention from the research community. This paper is an extensive study on the evaluation of top- k dominating queries. First, we propose a set of algorithms that apply on indexed multi-dimensional data. Second, we investigate query evaluation on data that are not indexed. Finally, we study a relaxed variant of the query which considers dominance in dimensional subspaces. Experiments using synthetic and real datasets demonstrate that our algorithms significantly outperform a previous skyline-based approach. We also illustrate the applicability of this multi-dimensional analysis query by studying the meaningfulness of its results on real data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Multi-dimensional top- k dominating queries

Loading next page...
 
/lp/springer_journal/multi-dimensional-top-k-dominating-queries-UsIt34Zxzr
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0117-y
Publisher site
See Article on Publisher Site

Abstract

The top- k dominating query returns k data objects which dominate the highest number of objects in a dataset. This query is an important tool for decision support since it provides data analysts an intuitive way for finding significant objects. In addition, it combines the advantages of top- k and skyline queries without sharing their disadvantages: (i) the output size can be controlled, (ii) no ranking functions need to be specified by users, and (iii) the result is independent of the scales at different dimensions. Despite their importance, top- k dominating queries have not received adequate attention from the research community. This paper is an extensive study on the evaluation of top- k dominating queries. First, we propose a set of algorithms that apply on indexed multi-dimensional data. Second, we investigate query evaluation on data that are not indexed. Finally, we study a relaxed variant of the query which considers dominance in dimensional subspaces. Experiments using synthetic and real datasets demonstrate that our algorithms significantly outperform a previous skyline-based approach. We also illustrate the applicability of this multi-dimensional analysis query by studying the meaningfulness of its results on real data.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2009

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off