Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multi-constrained Max–Min Fair Resource Allocation in Multi-channel Wireless Sensor Networks

Multi-constrained Max–Min Fair Resource Allocation in Multi-channel Wireless Sensor Networks Recent rich applications for the Internet of Things are demanding large bandwidth for communication which can cause congestion within multi-hop wireless sensor and ad hoc networks (WSANs). The capacity of the WSANs can be enhanced by using dual radios that allow concurrent use of multiple available wireless channels. It is a desirable feature that the enhanced capacity can be shared in a max–min fair manner by all existent flows in such multi-channel WSANs. In this paper, we propose a distributed resource allocation solution that achieves max–min fairness among multiple flows in multi-channel WSANs based on hybrid channel assignment. We find that the existence of two different types of enhanced network constraints in hybrid channel assignment-based multi-channel wireless networks leads to a new multi-constraint max–min resource allocation problem. We model the new max–min problem in the network utility maximization framework, with a particular focus on how to deal with resource prices induced by multi-constraints and adjust flow rates in response to the prices in a max–min fair manner. We present extensive simulation results to demonstrate the performance of the proposed distributed solution. We also discuss the trade-off between network throughput and fairness that exist in multi-channel WSANs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Multi-constrained Max–Min Fair Resource Allocation in Multi-channel Wireless Sensor Networks

Loading next page...
 
/lp/springer_journal/multi-constrained-max-min-fair-resource-allocation-in-multi-channel-Ov5d5gbyhJ

References (56)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
DOI
10.1007/s11277-017-4807-x
Publisher site
See Article on Publisher Site

Abstract

Recent rich applications for the Internet of Things are demanding large bandwidth for communication which can cause congestion within multi-hop wireless sensor and ad hoc networks (WSANs). The capacity of the WSANs can be enhanced by using dual radios that allow concurrent use of multiple available wireless channels. It is a desirable feature that the enhanced capacity can be shared in a max–min fair manner by all existent flows in such multi-channel WSANs. In this paper, we propose a distributed resource allocation solution that achieves max–min fairness among multiple flows in multi-channel WSANs based on hybrid channel assignment. We find that the existence of two different types of enhanced network constraints in hybrid channel assignment-based multi-channel wireless networks leads to a new multi-constraint max–min resource allocation problem. We model the new max–min problem in the network utility maximization framework, with a particular focus on how to deal with resource prices induced by multi-constraints and adjust flow rates in response to the prices in a max–min fair manner. We present extensive simulation results to demonstrate the performance of the proposed distributed solution. We also discuss the trade-off between network throughput and fairness that exist in multi-channel WSANs.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 9, 2017

There are no references for this article.