MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins

MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins We have identified two single-copy genes from the model legume Medicago truncatula (MtENOD16 and 20) whose expression can be correlated with early stages of root nodulation and whose predicted coding sequences are partially homologous to both pea/vetch ENOD5 and soybean N315/ENOD55. Database searching and sequence alignment have defined the encoded early nodulins as a distinct sub-family of phytocyanin-related proteins, although the absence of key ligands implies that they are unlikely to bind copper. Molecular modelling based on known phytocyanin structure has been used to predict the 3-dimensional conformation of the principle globular domain of MtENOD16/20. Additional structural features common to both early nodulin and phytocyanin precursors include an N-terminal transit peptide, a highly variable (hydroxy)proline-rich sequence which probably undergoes extensive post-translational modification, and a hydrophobic C-terminal tail. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins

Loading next page...
 
/lp/springer_journal/mtenod16-and-20-are-members-of-a-family-of-phytocyanin-related-early-Mfm407D5vR
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005916821224
Publisher site
See Article on Publisher Site

Abstract

We have identified two single-copy genes from the model legume Medicago truncatula (MtENOD16 and 20) whose expression can be correlated with early stages of root nodulation and whose predicted coding sequences are partially homologous to both pea/vetch ENOD5 and soybean N315/ENOD55. Database searching and sequence alignment have defined the encoded early nodulins as a distinct sub-family of phytocyanin-related proteins, although the absence of key ligands implies that they are unlikely to bind copper. Molecular modelling based on known phytocyanin structure has been used to predict the 3-dimensional conformation of the principle globular domain of MtENOD16/20. Additional structural features common to both early nodulin and phytocyanin precursors include an N-terminal transit peptide, a highly variable (hydroxy)proline-rich sequence which probably undergoes extensive post-translational modification, and a hydrophobic C-terminal tail.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off