Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper researches on the problem of object recognition using RGB-D data. Although deep convolutional neural networks have so far made progress in this area, they are still suffering a lot from lack of large-scale manually labeled RGB-D data. Labeling large-scale RGB-D dataset is a time-consuming and boring task. More importantly, such large-scale datasets often exist a long tail, and those hard positive examples of the tail can hardly be recognized. To solve these problems, we propose a multimodal self-augmentation and adversarial network (MSANet) for RGB-D object recognition, which can augment the data effectively at two levels while keeping the annotations. Toward the first level, series of transformations are leveraged to generate class-agnostic examples for each instance, which supports the training of our MSANet. Toward the second level, an adversarial network is proposed to generate class-specific hard positive examples while learning to classify them correctly to further improve the performance of our MSANet. Via the above schemes, the proposed approach wins the best results on several available RGB-D object recognition datasets, e.g., our experimental results indicate a 1.5% accuracy boost on benchmark Washington RGB-D object dataset compared with the current state of the art.
The Visual Computer – Springer Journals
Published: May 29, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.