MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition

MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition This paper researches on the problem of object recognition using RGB-D data. Although deep convolutional neural networks have so far made progress in this area, they are still suffering a lot from lack of large-scale manually labeled RGB-D data. Labeling large-scale RGB-D dataset is a time-consuming and boring task. More importantly, such large-scale datasets often exist a long tail, and those hard positive examples of the tail can hardly be recognized. To solve these problems, we propose a multimodal self-augmentation and adversarial network (MSANet) for RGB-D object recognition, which can augment the data effectively at two levels while keeping the annotations. Toward the first level, series of transformations are leveraged to generate class-agnostic examples for each instance, which supports the training of our MSANet. Toward the second level, an adversarial network is proposed to generate class-specific hard positive examples while learning to classify them correctly to further improve the performance of our MSANet. Via the above schemes, the proposed approach wins the best results on several available RGB-D object recognition datasets, e.g., our experimental results indicate a 1.5% accuracy boost on benchmark Washington RGB-D object dataset compared with the current state of the art. Keywords Deep learning · Object http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition

Loading next page...
 
/lp/springer_journal/msanet-multimodal-self-augmentation-and-adversarial-network-for-rgb-d-oR4KMbU8ua
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
D.O.I.
10.1007/s00371-018-1559-x
Publisher site
See Article on Publisher Site

Abstract

This paper researches on the problem of object recognition using RGB-D data. Although deep convolutional neural networks have so far made progress in this area, they are still suffering a lot from lack of large-scale manually labeled RGB-D data. Labeling large-scale RGB-D dataset is a time-consuming and boring task. More importantly, such large-scale datasets often exist a long tail, and those hard positive examples of the tail can hardly be recognized. To solve these problems, we propose a multimodal self-augmentation and adversarial network (MSANet) for RGB-D object recognition, which can augment the data effectively at two levels while keeping the annotations. Toward the first level, series of transformations are leveraged to generate class-agnostic examples for each instance, which supports the training of our MSANet. Toward the second level, an adversarial network is proposed to generate class-specific hard positive examples while learning to classify them correctly to further improve the performance of our MSANet. Via the above schemes, the proposed approach wins the best results on several available RGB-D object recognition datasets, e.g., our experimental results indicate a 1.5% accuracy boost on benchmark Washington RGB-D object dataset compared with the current state of the art. Keywords Deep learning · Object

Journal

The Visual ComputerSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off