Mouse models and type 2 diabetes: translational opportunities

Mouse models and type 2 diabetes: translational opportunities Type 2 diabetes prevalence is increasing worldwide. Treatments are available, but glycaemic control is not always effective in many patients. Better models are needed to create new and improved therapies and to expand our understanding of how type 2 diabetes begins and progresses. Translational research involves the transformation of knowledge from basic scientific discoveries to impacting on public health. This can allow identification of novel molecular mechanisms underlying the disease which can lead to preventative measures, biomarkers for diagnosis, or future therapies. Generation of genetically modified mice has allowed us to investigate the function of genes and develop reproducible models in which the phenotype of the animal can be tested. Mouse models have already given us insight into glucose metabolism and insulin secretion, identified novel pathways, and have been used to confirm genome-wide association studies. In this review we discuss the use of the mouse to clarify human genome-wide association study loci, understand genes and pathways involved in type 2 diabetes, and uncover novel targets for drug discovery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Mouse models and type 2 diabetes: translational opportunities

Loading next page...
 
/lp/springer_journal/mouse-models-and-type-2-diabetes-translational-opportunities-Y8E8KaH2Em
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-011-9345-3
Publisher site
See Article on Publisher Site

Abstract

Type 2 diabetes prevalence is increasing worldwide. Treatments are available, but glycaemic control is not always effective in many patients. Better models are needed to create new and improved therapies and to expand our understanding of how type 2 diabetes begins and progresses. Translational research involves the transformation of knowledge from basic scientific discoveries to impacting on public health. This can allow identification of novel molecular mechanisms underlying the disease which can lead to preventative measures, biomarkers for diagnosis, or future therapies. Generation of genetically modified mice has allowed us to investigate the function of genes and develop reproducible models in which the phenotype of the animal can be tested. Mouse models have already given us insight into glucose metabolism and insulin secretion, identified novel pathways, and have been used to confirm genome-wide association studies. In this review we discuss the use of the mouse to clarify human genome-wide association study loci, understand genes and pathways involved in type 2 diabetes, and uncover novel targets for drug discovery.

Journal

Mammalian GenomeSpringer Journals

Published: Jun 29, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off