Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode

Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and... The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange–Poisson case, we compute the second (precession, $$\psi $$ ψ ) and third (spin, $$\varphi $$ φ ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle $$\psi $$ ψ completing the treatment of the Euler–Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order $$-\,1/2$$ - 1 / 2 . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Celestial Mechanics and Dynamical Astronomy Springer Journals

Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode

Loading next page...
 
/lp/springer_journal/motions-about-a-fixed-point-by-hypergeometric-functions-new-non-A5CyIVWd5u
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Physics; Astrophysics and Astroparticles; Dynamical Systems and Ergodic Theory; Aerospace Technology and Astronautics; Geophysics/Geodesy; Classical Mechanics
ISSN
0923-2958
eISSN
1572-9478
D.O.I.
10.1007/s10569-018-9837-5
Publisher site
See Article on Publisher Site

Abstract

The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange–Poisson case, we compute the second (precession, $$\psi $$ ψ ) and third (spin, $$\varphi $$ φ ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle $$\psi $$ ψ completing the treatment of the Euler–Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order $$-\,1/2$$ - 1 / 2 .

Journal

Celestial Mechanics and Dynamical AstronomySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off