Motion analysis of two-link nonholonomic swimmers

Motion analysis of two-link nonholonomic swimmers This paper presents a tool for analyzing the motion of two-link nonholonomic swimmers. We refer to these systems as Land-sharks, which are a generalization of the well known Roller Racers. By exploiting the symmetry of the system, we are able to reduce the equations of motion and construct the scaled momentum evolution equation. This unveils a very useful and intuitive Land-shark motion analysis tool based on the partitioning of the mass and geometry parameter space. In particular, this partitioning reveals that, as opposed to the Roller Racer, the Land-shark’s momentum can be increased and decreased, i.e., the system can be stopped. This is done through the use of steering, which is the system’s only input. Furthermore, we explore the problem of modeling frictional slip by assessing the applicability of a previously proposed friction model to the oscillatory locomotion of the Land-shark. Results show that the proposed friction model is generally applicable to two-link nonholonomic mechanical systems, which is an important step toward establishing the generality of the friction model for nonholonomic mechanical systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Motion analysis of two-link nonholonomic swimmers

Loading next page...
 
/lp/springer_journal/motion-analysis-of-two-link-nonholonomic-swimmers-u8WtbTGzek
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3622-y
Publisher site
See Article on Publisher Site

Abstract

This paper presents a tool for analyzing the motion of two-link nonholonomic swimmers. We refer to these systems as Land-sharks, which are a generalization of the well known Roller Racers. By exploiting the symmetry of the system, we are able to reduce the equations of motion and construct the scaled momentum evolution equation. This unveils a very useful and intuitive Land-shark motion analysis tool based on the partitioning of the mass and geometry parameter space. In particular, this partitioning reveals that, as opposed to the Roller Racer, the Land-shark’s momentum can be increased and decreased, i.e., the system can be stopped. This is done through the use of steering, which is the system’s only input. Furthermore, we explore the problem of modeling frictional slip by assessing the applicability of a previously proposed friction model to the oscillatory locomotion of the Land-shark. Results show that the proposed friction model is generally applicable to two-link nonholonomic mechanical systems, which is an important step toward establishing the generality of the friction model for nonholonomic mechanical systems.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jun 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off