Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images

Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast... This paper presents an automatic mitosis detection approach of histopathology slide imaging based on using neutrosophic sets (NS) and moth-flame optimization (MFO). The proposed approach consists of two main phases, namely candidate’s extraction and candidate’s classification phase. At candidate’s extraction phase, Gaussian filter was applied to the histopathological slide image and the enhanced image was mapped into the NS domain. Then, morphological operations have been implemented to the truth subset image for more enhancements and focus on mitosis cells. At candidate’s classification phase, several features based on statistical, shape, texture and energy features were extracted from each candidate. Then, a principle of the meta-heuristic MFO algorithm was adopted to select the best discriminating features of mitosis cells. Finally, the selected features were used to feed the classification and regression tree (CART). A benchmark dataset consists of 50 histopathological images was adopted to evaluate the performance of the proposed approach. The adopted dataset consists of five distinct breast pathology slides. These slides were stained with H&E acquired by Aperio XT scanners with 40-x magnification. The total number of mitoses in 50 database images is 300, which were annotated by an expert pathologist. Experimental results reveal the capability of the MFO feature selection algorithm for finding the optimal feature subset which maximizing the classification performance compared to well-known and other meta-heuristic feature selection algorithms. Also, the high obtained value of accuracy, recall, precision and f-score for the adopted dataset prove the robustness of the proposed mitosis detection and classification approach. It achieved overall 65.42 % f-score, 66.03 % recall, 65.73 % precision and accuracy 92.99 %. The experimental results show that the proposed approach is fast, robust, efficient and coherent. Moreover, it could be used for further early diagnostic suspicion of breast cancer. Applied Intelligence Springer Journals

Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial