Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images

Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast... This paper presents an automatic mitosis detection approach of histopathology slide imaging based on using neutrosophic sets (NS) and moth-flame optimization (MFO). The proposed approach consists of two main phases, namely candidate’s extraction and candidate’s classification phase. At candidate’s extraction phase, Gaussian filter was applied to the histopathological slide image and the enhanced image was mapped into the NS domain. Then, morphological operations have been implemented to the truth subset image for more enhancements and focus on mitosis cells. At candidate’s classification phase, several features based on statistical, shape, texture and energy features were extracted from each candidate. Then, a principle of the meta-heuristic MFO algorithm was adopted to select the best discriminating features of mitosis cells. Finally, the selected features were used to feed the classification and regression tree (CART). A benchmark dataset consists of 50 histopathological images was adopted to evaluate the performance of the proposed approach. The adopted dataset consists of five distinct breast pathology slides. These slides were stained with H&E acquired by Aperio XT scanners with 40-x magnification. The total number of mitoses in 50 database images is 300, which were annotated by an expert pathologist. Experimental results reveal the capability of the MFO feature selection algorithm for finding the optimal feature subset which maximizing the classification performance compared to well-known and other meta-heuristic feature selection algorithms. Also, the high obtained value of accuracy, recall, precision and f-score for the adopted dataset prove the robustness of the proposed mitosis detection and classification approach. It achieved overall 65.42 % f-score, 66.03 % recall, 65.73 % precision and accuracy 92.99 %. The experimental results show that the proposed approach is fast, robust, efficient and coherent. Moreover, it could be used for further early diagnostic suspicion of breast cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images

Loading next page...
 
/lp/springer_journal/moth-flame-swarm-optimization-with-neutrosophic-sets-for-automatic-i02EXJO25j
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0897-0
Publisher site
See Article on Publisher Site

Abstract

This paper presents an automatic mitosis detection approach of histopathology slide imaging based on using neutrosophic sets (NS) and moth-flame optimization (MFO). The proposed approach consists of two main phases, namely candidate’s extraction and candidate’s classification phase. At candidate’s extraction phase, Gaussian filter was applied to the histopathological slide image and the enhanced image was mapped into the NS domain. Then, morphological operations have been implemented to the truth subset image for more enhancements and focus on mitosis cells. At candidate’s classification phase, several features based on statistical, shape, texture and energy features were extracted from each candidate. Then, a principle of the meta-heuristic MFO algorithm was adopted to select the best discriminating features of mitosis cells. Finally, the selected features were used to feed the classification and regression tree (CART). A benchmark dataset consists of 50 histopathological images was adopted to evaluate the performance of the proposed approach. The adopted dataset consists of five distinct breast pathology slides. These slides were stained with H&E acquired by Aperio XT scanners with 40-x magnification. The total number of mitoses in 50 database images is 300, which were annotated by an expert pathologist. Experimental results reveal the capability of the MFO feature selection algorithm for finding the optimal feature subset which maximizing the classification performance compared to well-known and other meta-heuristic feature selection algorithms. Also, the high obtained value of accuracy, recall, precision and f-score for the adopted dataset prove the robustness of the proposed mitosis detection and classification approach. It achieved overall 65.42 % f-score, 66.03 % recall, 65.73 % precision and accuracy 92.99 %. The experimental results show that the proposed approach is fast, robust, efficient and coherent. Moreover, it could be used for further early diagnostic suspicion of breast cancer.

Journal

Applied IntelligenceSpringer Journals

Published: Mar 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off