Morphological features of complex congenital cardiovascular anomalies in fetuses: as evaluated by cast models

Morphological features of complex congenital cardiovascular anomalies in fetuses: as evaluated by... Accurate prenatal diagnosis of complex congenital cardiovascular anomalies, vascular ones in particular, is still challenging. A fetal cardiovascular cast model can provide a copy of the cardiac chambers and great vessels with normal or pathological structures. This study was aimed to demonstrate three-dimensional anatomy of complex congenital cardiovascular anomalies in fetuses by means of corrosion casting. Twenty fetuses with prenatal-ultrasound-diagnosed complex cardiovascular anomalies were enrolled in this study (19 to 35 gestational weeks). Fetal cardiovascular cast models were made by a corrosion casting technique. The specimens were injected with casting material via the umbilical vein, and then immersed in strong acid after casting fluid was solidified, to disclose the geometries of cardiovascular cavities. Nineteen cast models were successfully made from 20 specimens. The casts distinctly showed the morphological malformations and spatial relationship between cardiac chambers and great vessels. One hundred and eleven abnormalities were revealed by casting in the 19 specimens, including 34 abnormalities located in the cardiac chambers (3, 4 and 27 anomalies in the atria, atrioventricular valves and ventricles, respectively), and 77 in the great vessels (28, 20, 24 and 5 anomalies in the aorta and its branches, the pulmonary artery, the ductus arteriosus and the major veins, respectively). Corrosion casting can display three-dimensional anatomy of fetal complex cardiovascular anomalies. This improves our understanding of related pathomorphology and prenatal diagnosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Huazhong University of Science and Technology [Medical Sciences] Springer Journals

Morphological features of complex congenital cardiovascular anomalies in fetuses: as evaluated by cast models

Loading next page...
 
/lp/springer_journal/morphological-features-of-complex-congenital-cardiovascular-anomalies-AhewTb2nOe
Publisher
Huazhong University of Science and Technology
Copyright
Copyright © 2017 by Huazhong University of Science and Technology and Springer-Verlag GmbH Germany
Subject
Medicine & Public Health; Medicine/Public Health, general
ISSN
1672-0733
eISSN
1993-1352
D.O.I.
10.1007/s11596-017-1778-9
Publisher site
See Article on Publisher Site

Abstract

Accurate prenatal diagnosis of complex congenital cardiovascular anomalies, vascular ones in particular, is still challenging. A fetal cardiovascular cast model can provide a copy of the cardiac chambers and great vessels with normal or pathological structures. This study was aimed to demonstrate three-dimensional anatomy of complex congenital cardiovascular anomalies in fetuses by means of corrosion casting. Twenty fetuses with prenatal-ultrasound-diagnosed complex cardiovascular anomalies were enrolled in this study (19 to 35 gestational weeks). Fetal cardiovascular cast models were made by a corrosion casting technique. The specimens were injected with casting material via the umbilical vein, and then immersed in strong acid after casting fluid was solidified, to disclose the geometries of cardiovascular cavities. Nineteen cast models were successfully made from 20 specimens. The casts distinctly showed the morphological malformations and spatial relationship between cardiac chambers and great vessels. One hundred and eleven abnormalities were revealed by casting in the 19 specimens, including 34 abnormalities located in the cardiac chambers (3, 4 and 27 anomalies in the atria, atrioventricular valves and ventricles, respectively), and 77 in the great vessels (28, 20, 24 and 5 anomalies in the aorta and its branches, the pulmonary artery, the ductus arteriosus and the major veins, respectively). Corrosion casting can display three-dimensional anatomy of fetal complex cardiovascular anomalies. This improves our understanding of related pathomorphology and prenatal diagnosis.

Journal

Journal of Huazhong University of Science and Technology [Medical Sciences]Springer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off