Morphogenetic bases and parametric system of trichome evolution in plants of the genus Draba L.

Morphogenetic bases and parametric system of trichome evolution in plants of the genus Draba L. Using quantitative morphological analysis of light microscopy data, the normal variation of trichome morphogenesis is studied in six whitlow grass species (Draba L.) and the morphological variation of adult trichomes in 11 species. The evolution consists in the transition from a radial morphogenesis pattern to bilateral and replacement of complex (branched) trichome rays with simple (unbranched) rays. A parametric system is constructed for classification of the ray morphology; this system includes two parameters—the ratio of the numbers of complex to simple rays, characterizing the probability of secondary branching of primary buds, and the number of primary buds, characterizing the probability of primary branching on the surface of the trichome cell. In this parametric space, all of the studied species fit well a third-order curve consisting of two ascending branches displaying a positive correlation between the primary and secondary branchings and a descending branch, located between them, where the primary and secondary branches are negatively correlated. The deduced evolutionary direction is almost independent of the size of the trichome cells and is explained exclusively by the mechanics of morphogenesis: acceleration in the development of the primary bud of the ray decreases the probability of its own branching and creates additional elastic extension of the cell surface, preventing other buds from branching. The morphogenesis itself appears to be a mechanically nonholonomic system, filtering in a selective manner the fluctuations of the same sign, which explains the directed pattern of its evolution. In the evolutionarily initial state, trichome ontogenesis is absent because its modules (primary buds) are formed by a mirror duplication. The ontogenesis commences when mirror symmetry in the formation of modules is lost and replaced with an axial pattern; thus, the change in the morphological type of buds is a direct consequence of the emergence of ontogenesis and its further evolution. Its main material is intraindividual variation, the only source of which is the mechanics of morphogenesis itself. It is found that morphological evolution can take place at an initially zero heritability and zero adaptive value of morphological differences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Morphogenetic bases and parametric system of trichome evolution in plants of the genus Draba L.

Loading next page...
 
/lp/springer_journal/morphogenetic-bases-and-parametric-system-of-trichome-evolution-in-4pTw13dyk3
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S106236041004003X
Publisher site
See Article on Publisher Site

Abstract

Using quantitative morphological analysis of light microscopy data, the normal variation of trichome morphogenesis is studied in six whitlow grass species (Draba L.) and the morphological variation of adult trichomes in 11 species. The evolution consists in the transition from a radial morphogenesis pattern to bilateral and replacement of complex (branched) trichome rays with simple (unbranched) rays. A parametric system is constructed for classification of the ray morphology; this system includes two parameters—the ratio of the numbers of complex to simple rays, characterizing the probability of secondary branching of primary buds, and the number of primary buds, characterizing the probability of primary branching on the surface of the trichome cell. In this parametric space, all of the studied species fit well a third-order curve consisting of two ascending branches displaying a positive correlation between the primary and secondary branchings and a descending branch, located between them, where the primary and secondary branches are negatively correlated. The deduced evolutionary direction is almost independent of the size of the trichome cells and is explained exclusively by the mechanics of morphogenesis: acceleration in the development of the primary bud of the ray decreases the probability of its own branching and creates additional elastic extension of the cell surface, preventing other buds from branching. The morphogenesis itself appears to be a mechanically nonholonomic system, filtering in a selective manner the fluctuations of the same sign, which explains the directed pattern of its evolution. In the evolutionarily initial state, trichome ontogenesis is absent because its modules (primary buds) are formed by a mirror duplication. The ontogenesis commences when mirror symmetry in the formation of modules is lost and replaced with an axial pattern; thus, the change in the morphological type of buds is a direct consequence of the emergence of ontogenesis and its further evolution. Its main material is intraindividual variation, the only source of which is the mechanics of morphogenesis itself. It is found that morphological evolution can take place at an initially zero heritability and zero adaptive value of morphological differences.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 4, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off