Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed Atlantic salmon ( Salmo salar ) in Norway

Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed... Proliferative gill disease (PGD) is an emerging problem in Norwegian culture of Atlantic salmon ( Salmo salar ). Parasites ( Ichthyobodo spp.) and bacteria ( Flexibacter/Flavobacterium ) may cause PGD, but for most cases of PGD in farmed salmon in Norway, no specific pathogen has been identified as the causative agent. However, Neoparamoeba sp. and several bacteria and viruses have been associated with this disease. In the spring of 2006, a new poxvirus, salmon gill poxvirus (SGPV), was discovered on the gills of salmon suffering from PGD in fresh water in northern Norway. Later the same year, this virus was also found on gills of salmon at two marine sites in western Norway. All farms suffered high losses associated with the presence of this virus. In this study, we describe the entry and morphogenesis of the SGP virus in epithelial gill cells from Atlantic salmon. Intracellular mature virions (IMVs) are the only infective particles that seem to be produced. These are spread by cell lysis and by “budding” of virus packages, containing more that 100 IMVs, from the apical surface of infected cells. Entry of the IMVs appears to occur by attachment to microridges on the cell surface and fusion of the viral and cell membranes, delivering the cores into the cytoplasm. The morphogenesis starts with the emergence of crescents in viroplasm foci in perinuclear areas of infected cells. These crescents consist of two tightly apposed unit membranes (each 5 nm thick) that seem to be derived from membranes of the endoplasmic reticulum. The crescents develop into spheres, immature virions (IVs), that are 350 nm in diameter and surrounded by two unit membranes. The maturation of the IVs occurs by condensation of the core material and a change from spherical to boat-shaped particles, intracellular mature virions (IMVs), that are about 300 nm long. Hence, the IMVs from the SGP virus have a different morphology compared to other vertebrate poxviruses that are members of the subfamily Chordopoxvirinae , and they are more similar to members of subfamily Entomopoxvirinae , genus Alphaentomopoxvirus . However, it is premature to make a taxonomic assignment until the genome of the SGP virus has been sequenced, but morphogenesis clearly shows that this virus is a member of family Poxviridae . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Morphogenesis of salmonid gill poxvirus associated with proliferative gill disease in farmed Atlantic salmon ( Salmo salar ) in Norway

Loading next page...
 
/lp/springer_journal/morphogenesis-of-salmonid-gill-poxvirus-associated-with-proliferative-O6xsG1v7B8
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-008-0117-7
Publisher site
See Article on Publisher Site

Abstract

Proliferative gill disease (PGD) is an emerging problem in Norwegian culture of Atlantic salmon ( Salmo salar ). Parasites ( Ichthyobodo spp.) and bacteria ( Flexibacter/Flavobacterium ) may cause PGD, but for most cases of PGD in farmed salmon in Norway, no specific pathogen has been identified as the causative agent. However, Neoparamoeba sp. and several bacteria and viruses have been associated with this disease. In the spring of 2006, a new poxvirus, salmon gill poxvirus (SGPV), was discovered on the gills of salmon suffering from PGD in fresh water in northern Norway. Later the same year, this virus was also found on gills of salmon at two marine sites in western Norway. All farms suffered high losses associated with the presence of this virus. In this study, we describe the entry and morphogenesis of the SGP virus in epithelial gill cells from Atlantic salmon. Intracellular mature virions (IMVs) are the only infective particles that seem to be produced. These are spread by cell lysis and by “budding” of virus packages, containing more that 100 IMVs, from the apical surface of infected cells. Entry of the IMVs appears to occur by attachment to microridges on the cell surface and fusion of the viral and cell membranes, delivering the cores into the cytoplasm. The morphogenesis starts with the emergence of crescents in viroplasm foci in perinuclear areas of infected cells. These crescents consist of two tightly apposed unit membranes (each 5 nm thick) that seem to be derived from membranes of the endoplasmic reticulum. The crescents develop into spheres, immature virions (IVs), that are 350 nm in diameter and surrounded by two unit membranes. The maturation of the IVs occurs by condensation of the core material and a change from spherical to boat-shaped particles, intracellular mature virions (IMVs), that are about 300 nm long. Hence, the IMVs from the SGP virus have a different morphology compared to other vertebrate poxviruses that are members of the subfamily Chordopoxvirinae , and they are more similar to members of subfamily Entomopoxvirinae , genus Alphaentomopoxvirus . However, it is premature to make a taxonomic assignment until the genome of the SGP virus has been sequenced, but morphogenesis clearly shows that this virus is a member of family Poxviridae .

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off