Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex

Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex

Loading next page...
 
/lp/springer_journal/morphogenesis-and-patterning-at-the-organ-boundaries-in-the-higher-OD0H0FeUBB
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-2760-7
Publisher site
See Article on Publisher Site

Abstract

Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 5, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off