Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue

Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide... The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125I, 131Cs, and 103Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australasian Physical & Engineering Sciences in Medicine Springer Journals

Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue

Loading next page...
 
/lp/springer_journal/monte-carlo-simulations-for-dose-enhancement-in-cancer-treatment-using-mgd30XN05F
Publisher
Springer Journals
Copyright
Copyright © 2018 by Australasian College of Physical Scientists and Engineers in Medicine
Subject
Biomedicine; Biomedicine, general; Biological and Medical Physics, Biophysics; Medical and Radiation Physics; Biomedical Engineering
ISSN
0158-9938
eISSN
1879-5447
D.O.I.
10.1007/s13246-018-0633-z
Publisher site
See Article on Publisher Site

Abstract

The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125I, 131Cs, and 103Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

Journal

Australasian Physical & Engineering Sciences in MedicineSpringer Journals

Published: Mar 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off