Monte Carlo method in scanning electron microscopy. 1. Modeling and experiment

Monte Carlo method in scanning electron microscopy. 1. Modeling and experiment Results of modeling by the Monte Carlo method of signals from a scanning electron microscope examining rectangular grooves in silicon are compared with experimental results obtained for a scanning electron microscope operating in the secondary slow electron collection mode. The comparison is performed for the peaks of signals characterizing the primary electron beam near the walls of rectangular grooves: the widths and amplitudes of the peaks, the integral contributions of the peaks, and the positions of the peaks relative to the walls of the grooves. The parameters and their dependences on the primary electron energy are compared. All dependences are very different in terms of the parameters of the peaks and their dependence on the primary electron energy. This proves that the traditional representation of the Monte Carlo method does not work in scanning electron microscopy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Monte Carlo method in scanning electron microscopy. 1. Modeling and experiment

Loading next page...
 
/lp/springer_journal/monte-carlo-method-in-scanning-electron-microscopy-1-modeling-and-oipu7XaBx9
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Surfaces and Interfaces, Thin Films
ISSN
1027-4510
eISSN
1819-7094
D.O.I.
10.1134/S1027451017040243
Publisher site
See Article on Publisher Site

Abstract

Results of modeling by the Monte Carlo method of signals from a scanning electron microscope examining rectangular grooves in silicon are compared with experimental results obtained for a scanning electron microscope operating in the secondary slow electron collection mode. The comparison is performed for the peaks of signals characterizing the primary electron beam near the walls of rectangular grooves: the widths and amplitudes of the peaks, the integral contributions of the peaks, and the positions of the peaks relative to the walls of the grooves. The parameters and their dependences on the primary electron energy are compared. All dependences are very different in terms of the parameters of the peaks and their dependence on the primary electron energy. This proves that the traditional representation of the Monte Carlo method does not work in scanning electron microscopy.

Journal

Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off