Monovalent Cations Contribute to T-type Calcium Channel (CaV3.1 and CaV3.2) Selectivity

Monovalent Cations Contribute to T-type Calcium Channel (CaV3.1 and CaV3.2) Selectivity Low voltage-activated (LVA) Ca2+ channels regulate chemical signaling by their ability to select for Ca2+. Whereas Ca2+ is the main permeating species through Ca2+ channels, Ca2+ permeation may be modified by abundant intra- and extracellular monovalent cations. Therefore, we explored monovalent cation regulation of LVA Ca2+ permeation in the cloned T-type Ca2+ channels α1G (CaV3.1) and α1H (CaV3.2). In physiological [Ca2+], the reversal potential in symmetrical Li+ was 19 mV in α1G and 18 mV in α1H, in symmetrical Cs+ the reversal potential was 36 mV in α1G and 37 mV in α1H, and in the bi-ionic condition with Li+ in the bath and Cs+ in the pipette, the reversal potential was 46 mV in both α1G and α1H. When Cs+ was used in the pipette, replacement of external Cs+ with Li+ (or Na+) shifted the reversal potential positive by 5–6 mV and increased the net inward current in α1G. Taken together the data indicate that in physiological [Ca2+], external Li+ (or Na+) permeates more readily than external Cs+, resulting in a positive shift of the reversal potential. We conclude that external monovalent cations dictate T-type Ca2+ channel selectivity by permeating through the channel. Similar to Li+, we previously reported that external [H+] can regulate T-type Ca2+ channel selectivity. α1H’s selectivity was more sensitive to external pH changes compared to α1G. When Cs+ was used in the pipette and Li+ was used in the bath external acidification from pHo 7.4 to 6.0 caused a negative shift of the reversal by 8 mV in α1H. Replacement of internal Cs+ with Li+ reduced the pH-induced shift of the reversal potential to 2 mV. We conclude that, similar to other external monovalent cations, H+ can modify T-type Ca2+ channel selectivity. However, in contrast to external monovalent ions that readily permeate, H+ regulate T-type Ca2+ channel selectivity by increasing the relative permeability of the internal monovalent cation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Monovalent Cations Contribute to T-type Calcium Channel (CaV3.1 and CaV3.2) Selectivity

Loading next page...
 
/lp/springer_journal/monovalent-cations-contribute-to-t-type-calcium-channel-cav3-1-and-XES23WIquH
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-2017-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial