Monolayer V2O5/TiO2–ZrO2 catalysts for selective oxidation of o-xylene: preparation and characterization

Monolayer V2O5/TiO2–ZrO2 catalysts for selective oxidation of o-xylene: preparation and... A series of TiO2–ZrO2 supported V2O5 catalysts with vanadia loadings ranging from 4 to 12 wt% were synthesized by a wet impregnation technique and subjected to various thermal treatments at temperatures ranging from 773 to 1,073 K to understand the dispersion and thermal stability of the catalysts. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area, oxygen uptake, and X-ray photoelectron spectroscopy (XPS) techniques. XRD results of 773 K calcined samples conferred an amorphous nature of the mixed oxide support and a highly dispersed form of vanadium oxide. Oxygen uptake measurements supported the formation of a monolayer of vanadium oxide over the thermally stable TiO2–ZrO2 support. The O 1s, Ti 2p, Zr 3d, and V 2p core level photoelectron peaks of TiO2–ZrO2 and V2O5/TiO2–ZrO2 catalysts are sensitive to the calcination temperature. No significant changes in the oxidation states of Ti4+ and Zr4+ were noted with increasing thermal treatments. Vanadium oxide stabilized as V4+ at lower temperatures, and the presence of V5+ is observed at 1,073 K. The synthesized catalysts were evaluated for selective oxidation of o-xylene under normal atmospheric pressure in the temperature range of 600–708 K. The TiO2–ZrO2 support exhibits very less conversion of o-xylene, while 12 wt% V2O5 loaded sample exhibited a good conversion and a high product selectivity towards the desired product, phthalic anhydride. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Monolayer V2O5/TiO2–ZrO2 catalysts for selective oxidation of o-xylene: preparation and characterization

Loading next page...
 
/lp/springer_journal/monolayer-v2o5-tio2-zro2-catalysts-for-selective-oxidation-of-o-xylene-NQOIue5kPA
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0412-x
Publisher site
See Article on Publisher Site

Abstract

A series of TiO2–ZrO2 supported V2O5 catalysts with vanadia loadings ranging from 4 to 12 wt% were synthesized by a wet impregnation technique and subjected to various thermal treatments at temperatures ranging from 773 to 1,073 K to understand the dispersion and thermal stability of the catalysts. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area, oxygen uptake, and X-ray photoelectron spectroscopy (XPS) techniques. XRD results of 773 K calcined samples conferred an amorphous nature of the mixed oxide support and a highly dispersed form of vanadium oxide. Oxygen uptake measurements supported the formation of a monolayer of vanadium oxide over the thermally stable TiO2–ZrO2 support. The O 1s, Ti 2p, Zr 3d, and V 2p core level photoelectron peaks of TiO2–ZrO2 and V2O5/TiO2–ZrO2 catalysts are sensitive to the calcination temperature. No significant changes in the oxidation states of Ti4+ and Zr4+ were noted with increasing thermal treatments. Vanadium oxide stabilized as V4+ at lower temperatures, and the presence of V5+ is observed at 1,073 K. The synthesized catalysts were evaluated for selective oxidation of o-xylene under normal atmospheric pressure in the temperature range of 600–708 K. The TiO2–ZrO2 support exhibits very less conversion of o-xylene, while 12 wt% V2O5 loaded sample exhibited a good conversion and a high product selectivity towards the desired product, phthalic anhydride.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 4, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off