Monogenic hypercholesterolemias: New genes, new drug targets

Monogenic hypercholesterolemias: New genes, new drug targets This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs—statins and cholesterol absorption blockers—in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Monogenic hypercholesterolemias: New genes, new drug targets

Loading next page...
 
/lp/springer_journal/monogenic-hypercholesterolemias-new-genes-new-drug-targets-Pw0HdLLqiP
Publisher
Springer Journals
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795408100025
Publisher site
See Article on Publisher Site

Abstract

This review is focused on recent data on structure and functions of PCSK9 proprotein convertase, a newly identified participant in cholesterol metabolism in mammalian organisms, including humans. Proprotein convertase acts as a molecular chaperone for the low density lipoprotein (LDL) receptor, targeting it to the lysosomal degradation pathway. Various mutations increasing the PCSK9 affinity toward the LDL receptor cause autosomal dominant hypercholesterolemia. In contrast, loss-of-function mutations in PCSK9 gene decrease the blood plasma cholesterol level, thus acting as a protection factor against atherosclerosis and coronary heart disease. It is supposed that pharmacological agents inhibiting the interaction between PCSK9 and LDL receptor may substantially amplify the benefits of drugs—statins and cholesterol absorption blockers—in the treatment of all types of hypercholesterolemia, including its widespread multigenic and multifactorial forms.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 16, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off