Monitoring Cl− Movement in Single Cells Exposed to Hypotonic Solution

Monitoring Cl− Movement in Single Cells Exposed to Hypotonic Solution Self-referencing ion - selective electrodes (ISEs), made with Chloride Ionophore I-Cocktail A (Fluka), were positioned 1–3 μm from human embryonic kidney cells (tsA201a) and used to record chloride flux during a sustained hyposmotic challenge. The ISE response was close to Nernstian when comparing potentials (V N) measured in 100 and 10 mM NaCl (ΔV N = 57 ± 2 mV), but was slightly greater than ideal when comparing 1 and 10 mm NaCl (ΔV N = 70 ± 3 mV). The response was also linear in the presence of 1 mm glutamate, gluconate, or acetate, 10 μm tamoxifen, or 0.1, 1, or 10 mm HEPES at pH 7.0. The ISE was ∼3 orders of magnitude more selective for Cl− over glutamate or gluconate but less than 2 orders of magnitude move selective for Cl− over bicarbonate, acetate, citrate or thiosulfate. As a result this ISE is best described as an anion sensor. The ISE was ‘poisoned’ by 50 μm 5−nitro-2-(3phenylpropyl-amino)-benzoic acid (NPPB), but not by tamoxifen. An outward anion efflux was recorded from cells challenged with hypotonic (250 ± 5 mOsm) solution. The increase in efflux peaked 7–8 min before decreasing, consistent with regulatory volume decreases observed in separate experiments using a similar osmotic protocol. This anion efflux was blocked by 10 μm tamoxifen. These results establish the feasibility of using the modulation of electrochemical, anion-selective, electrodes to monitor anions and, in this case, chloride movement during volume regulatory events. The approach provides a real-time measure of anion movement during regulated volume decrease at the single-cell level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Monitoring Cl− Movement in Single Cells Exposed to Hypotonic Solution

Loading next page...
 
/lp/springer_journal/monitoring-cl-movement-in-single-cells-exposed-to-hypotonic-solution-CSeT0kzJZb
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0735-x
Publisher site
See Article on Publisher Site

Abstract

Self-referencing ion - selective electrodes (ISEs), made with Chloride Ionophore I-Cocktail A (Fluka), were positioned 1–3 μm from human embryonic kidney cells (tsA201a) and used to record chloride flux during a sustained hyposmotic challenge. The ISE response was close to Nernstian when comparing potentials (V N) measured in 100 and 10 mM NaCl (ΔV N = 57 ± 2 mV), but was slightly greater than ideal when comparing 1 and 10 mm NaCl (ΔV N = 70 ± 3 mV). The response was also linear in the presence of 1 mm glutamate, gluconate, or acetate, 10 μm tamoxifen, or 0.1, 1, or 10 mm HEPES at pH 7.0. The ISE was ∼3 orders of magnitude more selective for Cl− over glutamate or gluconate but less than 2 orders of magnitude move selective for Cl− over bicarbonate, acetate, citrate or thiosulfate. As a result this ISE is best described as an anion sensor. The ISE was ‘poisoned’ by 50 μm 5−nitro-2-(3phenylpropyl-amino)-benzoic acid (NPPB), but not by tamoxifen. An outward anion efflux was recorded from cells challenged with hypotonic (250 ± 5 mOsm) solution. The increase in efflux peaked 7–8 min before decreasing, consistent with regulatory volume decreases observed in separate experiments using a similar osmotic protocol. This anion efflux was blocked by 10 μm tamoxifen. These results establish the feasibility of using the modulation of electrochemical, anion-selective, electrodes to monitor anions and, in this case, chloride movement during volume regulatory events. The approach provides a real-time measure of anion movement during regulated volume decrease at the single-cell level.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off